

F O U N D A T I O N

®

O

P
C

 U
A

 C
o

m
p

a
n

io
n

-S
p

e
c

ific
a

tio
n

OPC 40010-1

OPC UA for Robotics

Part 1: Vertical Integration

Release 1.00

2019-07

OPC 40010-1 (Edition 1.0, 2019-07) is identical with VDMA 40010-1:2019-07

F O U N D A T I O N

®

OPC UA Companion Specification for Robotics (OPC Robotics) –
Part 1: Vertical integration

OPC UA Companion Specification for Robotics (OPC Robotics) –
Teil 1: Vertikale Integration

VDMA

VDMA Specification July 2019

VDMA 40010-1

ICS 25.040.30

OPC UA Companion Specification for Robotics (OPC Robotics) –
Part 1: Vertical integration

OPC UA Companion Specification for Robotics (OPC Robotics) –
Teil 1: Vertikale Integration

Document comprises 80 pages

VDMA

© All rights reserved to VDMA e.V., Frankfurt/Main – Modification, amendment, editing, translation, copying and/or circulation
only with permission in writing from VDMA e.V.

VDMA 40010-1:2019-07

Release 1.00 3 OPC 40010-1: Vertical Integration

Contents

Page

Contents .. 3

Figures ... 6

Tables ... 7

Foreword ... 10

1 Scope .. 11

2 Normative references .. 11

3 Terms, definitions and conventions .. 12

3.1 Overview ... 12

3.2 Terms .. 12

3.3 Abbreviations .. 14

3.4 Conventions used in this document ... 14

3.4.1 Conventions for Node descriptions... 14

3.4.2 NodeIds and BrowseNames ... 16

3.4.3 Common Attributes ... 16

4 General information to OPC Robotics and OPC UA .. 19

4.1 Introduction to OPC Robotics ... 19

4.2 Introduction to OPC Unified Architecture ... 20

4.2.1 What is OPC UA? ... 20

4.2.2 Basics of OPC UA .. 20

4.2.3 Information modelling in OPC UA... 21

5 Use Cases .. 24

6 OPC Robotics Information Model overview ... 26

7 OPC UA ObjectTypes .. 28

7.1 MotionDeviceSystemType ObjectType Definition .. 28

7.1.1 Overview ... 28

7.1.2 ObjectType definition .. 28

7.1.3 ObjectType description ... 29

7.2 MotionDeviceType ObjectType Definition .. 30

7.2.1 Overview ... 30

7.2.2 ObjectType definition .. 31

7.2.3 ObjectType description ... 31

7.3 AxisType ObjectType Definition ... 34

7.3.1 Overview ... 34

7.3.2 ObjectType definition .. 34

7.3.3 ObjectType description ... 35

7.4 PowerTrainType ObjectType Definition .. 36

7.4.1 Overview ... 36

7.4.2 ObjectType definition .. 36

OPC 40010-1: Vertical Integration 4 Release 1.00

7.4.3 ObjectType description .. 37

7.5 MotorType ObjectType Definition .. 37

7.5.1 Overview .. 37

7.5.2 ObjectType definition ... 38

7.5.3 ObjectType description .. 39

7.6 GearType ObjectType Definition ... 40

7.6.1 Overview .. 40

7.6.2 ObjectType definition ... 42

7.6.3 ObjectType description .. 42

7.7 SafetyStateType ObjectType Definition ... 43

7.7.1 Overview .. 43

7.7.2 ObjectType definition ... 44

7.7.3 ObjectType description .. 44

7.8 ControllerType ObjectType Definition .. 47

7.8.1 Overview .. 47

7.8.2 ObjectType definition ... 49

7.8.3 ObjectType description .. 49

7.9 AuxiliaryComponentType ObjectType Definition ... 52

7.9.1 Overview .. 52

7.9.2 ObjectType definition ... 52

7.9.3 ObjectType description .. 52

7.10 DriveType ... 53

7.10.1 Overview .. 53

7.10.2 ObjectType definition ... 53

7.10.3 ObjectType description .. 53

7.11 TaskControlType ObjectType Definition .. 54

7.11.1 Overview .. 54

7.11.2 ObjectType definition ... 55

7.11.3 ObjectType description .. 55

7.12 LoadType ObjectType Definition ... 56

7.12.1 Overview .. 56

7.12.2 ObjectType definition ... 56

7.12.3 ObjectType description .. 56

7.13 UserType ObjectType Definition .. 57

7.13.1 Overview .. 57

7.13.2 ObjectType definition ... 58

7.13.3 ObjectType description .. 58

8 OPC UA ReferenceTypes ... 58

8.1 General .. 58

8.2 Controls (IsControlledBy) Reference Type .. 59

8.3 Moves (IsMovedBy) Reference Type .. 59

Release 1.00 5 OPC 40010-1: Vertical Integration

8.4 Requires (IsRequiredBy) Reference Type ... 60

8.5 IsDrivenBy (Drives) Reference Type .. 60

8.6 IsConnectedTo Reference Type... 61

8.7 HasSafetyStates (SafetyStatesOf) Reference Type .. 61

8.8 HasSlave (IsSlaveOf) Reference Type .. 61

9 Profiles and Namespaces ... 62

9.1 Namespace Metadata .. 62

9.2 Conformance Units and Profiles ... 62

9.3 Server Profiles .. 62

9.3.1 Robotics Base Profile ... 62

9.4 Client Facets ... 63

9.5 Handling of OPC UA Namespaces .. 63

Annex A (normative)

Robotics Namespace and mappings…………………..……...……………………………………………………65

A.1 Namespace and identifiers for Robotics Information Model……………………………………………………65

A.2 Profile URIs for Robotics Information Model……………………………………………………………………..65

Annex B (informative)

Examples………...…66

B.1 Examples of motion device systems, motion devices, axes and power trains……………………………….66

B.1.1 Example for motion device systems…………………………………………………………………………….66

B.1.2 Examples for motion devices and controllers in a motion device system……………………………..…...66

B.1.3 Examples for motion devices……………………………………………………………………………...…….66

B.1.4 Examples of combinations of motion devices in a motion device system……………………………….…70

B.1.5 Axes and power trains………………………………………………………………………………………..….71

B.1.6 Virtual Axes………………………………………………………………………………………………..…...…72

B.1.7 Examples for axes and power trains…………………………………………………………………..……….72

B.1.8 Examples for the use of references regarding axes and power trains……………………………….…….72

B.1.9 Representations of exemplary server implementations………………………………………………...……76

OPC 40010-1: Vertical Integration 6 Release 1.00

Figures

Figure 1 – OPC UA standard definitions.. 18
Figure 2 – OPC UA and additional definitions ... 18
Figure 3 – The Scope of OPC UA within an Enterprise ... 20
Figure 4 – A Basic Object in an OPC UA Address Space ... 21
Figure 5 – The Relationship between Type Definitions and Instances ... 22
Figure 6 – Examples of References between Objects .. 23
Figure 7 – The OPC UA Information Model Notation .. 23
Figure 8 – Communication structure with OPC UA ... 25
Figure 9 – OPC Robotics describes the semantic self-description ... 25
Figure 10 – OPC Robotics top level view .. 26
Figure 11 – OPC Robotics overview .. 27
Figure 12 – Overview MotionDeviceSystemType .. 28
Figure 13 – Overview MotionDeviceType .. 30
Figure 14 – Overview AxisType ... 34
Figure 15 – Overview PowerTrainType ... 36
Figure 16 – Overview MotorType .. 38
Figure 17 – Overview GearType .. 40
Figure 18 – Overview SafetyStateType ... 44
Figure 19 – Overview ControllerType .. 48
Figure 20 – Overview AuxiliaryComponentType ... 52
Figure 21 – Overview DriveType ... 53
Figure 22 – Overview TaskControlType .. 54
Figure 23 – Overview LoadType .. 56
Figure 24 – Overview UserType .. 58
Figure 25 – Reference Type Hierarchy .. 59
Figure B.1 – Cartesian manipulator……………………………………………………..……………………….….…67
Figure B.2 – Portal manipulator………………………………………………………….……………………….……67
Figure B.3 – Stewart platform or Hexapod…………………………………………………………………….…..….68
Figure B.4 – Delta robot………………………………………………………………………………………………...68
Figure B.5 – Scara robot…………………………………………………………………………………………..……69
Figure B.6 – Articulated robot…………………………………………………………………………………..……...69
Figure B.7 – Schematic of a humanoid robot…………………………………………………………………..…….70
Figure B.8 – Motion device system 1…………………………………………………………………………...……..70
Figure B.9 – Motion device system 2……………………………………………………………………….……..…..71
Figure B.10 – Axis and power train coupling………………………………………………………………………....72
Figure B.11 – Coupling references for a typical six-axis industrial robot…………………..…………....………...73
Figure B.12 – Coupling references for a six-axis industrial robot with master-slave axes……………………....74
Figure B.13 – Coupling references for a simple linear two-dimensional motion device………………………….75
Figure B.14 – Coupling references for linear two-dimensional motion device…………………………………….76
Figure B.15 – IsDrivenby references to DriveType instances………………………………………………………77
Figure B.16 – IsDrivenby references to vendor specific subtypes of BaseObjectType instances………………78
Figure B.17 – IsDrivenby references to DriveType instances for mulit-slot drives w/o slots…………………….79
Figure B.18 – IsDrivenby used with motor-integrated-drives…………………………………………………….…80
Figure B.19 – View on a six-axis robot with master-slave and drive-slots……………………………………..….81
Figure B.20 – View on a motion device system with 3 motion devices controlled by one controller………...…82

Release 1.00 7 OPC 40010-1: Vertical Integration

Tables

Table 1 – Terms and definitions ... 12
Table 2 – Abbreviations and definitions ... 14
Table 3 – Examples of DataTypes ... 15
Table 4 – Type Definition Table ... 15
Table 5 – Common Node Attributes ... 16
Table 6 – Common Object Attributes ... 17
Table 7 – Common Variable Attributes .. 17
Table 8 – Common VariableType Attributes .. 17
Table 9 – Common Method Attributes .. 18
Table 10 – Description of additional definitions .. 19
Table 11 – MotionDeviceSystemType Definition.. 28
Table 12 – TypeDefinition of MotionDevices of MotionDeviceSystemType ... 29
Table 13 – TypeDefinition of Controllers of MotionDeviceSystemType ... 29
Table 14 – TypeDefinition of SafetyStates of MotionDeviceSystemType .. 29
Table 15 – MotionDeviceType Definition .. 31
Table 16 – MotionDeviceCategoryEnumeration .. 32
Table 17 – ParameterSet of MotionDeviceType .. 32
Table 18 – TypeDefinition of Axes of MotionDeviceType .. 33
Table 19 –TypeDefinition of PowerTrains of MotionDeviceType ... 33
Table 20 – TypeDefinition of AdditionalComponents of MotionDeviceType .. 33
Table 21 – AxisType Definition ... 34
Table 22 – AxisMotionProfileEnumeration ... 35
Table 23 – ParameterSet of AxisType ... 35
Table 24 – PowerTrainType Definition ... 36
Table 25 – MotorType Definition .. 38
Table 26 – ParameterSet of MotorType ... 39
Table 27 – GearType Definition ... 42
Table 28 – SafetyStateType Definition ... 44
Table 29 – TypeDefinition of EmergencyStopFunctions of SafetyStateType .. 45
Table 30 – ObjectType EmergencyStopFunctionType .. 45
Table 31 – TypeDefinition of ProtectiveStopFunctions of SafetyStateType .. 45
Table 32 – ObjectType ProtectiveStopFunctionType ... 46
Table 33 – Door Interlock Protective Stop Example .. 46
Table 34 – Teach Pendant Enabling Device Protective Stop Example ... 46
Table 35 – ParameterSet of SafetyStateType.. 47
Table 36 – OperationalModeEnumeration ... 47
Table 37 – ControllerType Definition .. 49
Table 38 – TypeDefinition of Components of ControllerType .. 50
Table 39 – TypeDefinition of Software of ControllerType .. 50
Table 40 – TypeDefinition of TaskControls of ControllerTyp ... 51
Table 41 – ParameterSet of ControllerType... 51
Table 42 – AuxiliaryComponentType Definition ... 52
Table 43 – DriveType Definition ... 53
Table 44 – TaskControlType Definition .. 55
Table 45 – ParameterSet of TaskControlType ... 55
Table 46 – ExecutionModeEnumeration .. 55
Table 47 – LoadType Definition ... 56
Table 48 – LoadType possible degrees of modelling ... 57
Table 49 – UserType Definition .. 58
Table 50 – Controls Reference Definition .. 59
Table 51 – Controls Reference Definition .. 60
Table 52 – Controls Reference Definition .. 60
Table 53 – Drives Reference Definition .. 60
Table 54 – IsConnectedTo Reference Definition ... 61
Table 55 – HasSafetyStates Reference Definition ... 61
Table 56 – HasSlave Reference Definition .. 61

OPC 40010-1: Vertical Integration 8 Release 1.00

Table 57 – NamespaceMetadata Object for this Specification .. 62
Table 58 – Robotics Base Profile .. 63
Table 59 – Namespaces used in a Robotics Server ... 63
Table 60 – Namespaces used in this specification .. 64

Release 1.00 9 OPC 40010-1: Vertical Integration

OPC FOUNDATION, VDMA

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

 This document is provided "as is" by the OPC Foundation and the VDMA

 Right of use for this specification is restricted to this specification and does not grant rights of use for referred
documents.

 Right of use for this specification will be granted without cost.

 This document may be distributed through computer systems, printed or copied as long as the content remains
unchanged and the document is not modified.

 OPC Foundation and VDMA do not guarantee usability for any purpose and shall not be made liable for any case
using the content of this document.

 The user of the document agrees to indemnify OPC Foundation and VDMA and their officers, directors and agents
harmless from all demands, claims, actions, losses, damages (including damages from personal injuries), costs and
expenses (including attorneys' fees) which are in any way related to activities associated with its use of content from
this specification.

 The document shall not be used in conjunction with company advertising, shall not be sold or licensed to any party.

 The intellectual property and copyright is solely owned by the OPC Foundation and the VDMA.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC or VDMA specifications may
require use of an invention covered by patent rights. OPC Foundation or VDMA shall not be responsible for identifying patents
for which a license may be required by any OPC or VDMA specification, or for conducting legal inquiries into the legal validi ty
or scope of those patents that are brought to its attention. OPC or VDMA specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION NOR VDMA MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH
REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN
NO EVENT SHALL THE OPC FOUNDATION NOR VDMA BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by the user of this
specification.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected the reby.

This Agreement shall be governed by and construed under the laws of Germany.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

OPC 40010-1: Vertical Integration 10 Release 1.00

Foreword

This specification was created by a joint working group of the OPC Foundation and VDMA.

OPC Foundation

OPC is the interoperability standard for the secure and reliable exchange of data and information in the industrial
automation space and in other industries. It is platform independent and ensures the seamless flow of
information among devices from multiple vendors. The OPC Foundation is responsible for the development and
maintenance of this standard.

OPC UA is a platform independent service-oriented architecture that integrates all the functionality of the
individual OPC Classic specifications into one extensible Framework. This multi-layered approach accomplishes
the original design specification goals of:

– Platform independence: allows manufacturers independent exchange of information

– Scalable: from an embedded microcontroller to a cloud-based infrastructure

– Secure: encryption, authentication, authorization and auditing

– Expandable: ability to add new features including transports without affecting existing applications

– Comprehensive information modelling capabilities: for defining any model from simple to complex

VDMA Robotics Initiative

The VDMA is the biggest mechanical engineering industry association in Europe and represents over 3,200
mainly small and medium size member companies in the engineering industry, making it one of the largest and
most important industrial associations in Europe. As part of the VDMA Robotics + Automation association,
VDMA Robotics unites more than 75 members: companies offering robots, components of a robot, control units
and motion device system integrations. The objective of this industry-driven platform is to support the robotics
industry through a wide spectrum of activities and services such as standardization, statistics, marketing, public
relations, trade fair policy, networking events and representation of interests.

Under the auspices of VDMA, a companion specification for robotics is developed by leading robot
manufacturers and users within the "VDMA OPC Robotics Initiative". This Working Group has the status of an
international joint working group with worldwide lead to develop a companion specification for robotics and is
supported by the OPC Foundation. The aim is to create an information model with object types, which enables
the modelling of robotic systems according to OPC UA as an interface for higher-level control and evaluation
systems (plant control, MES, cloud). Not included are "application-related" interfaces, that can also be modelled
via OPC UA. These interfaces are defined in further working groups for OPC UA Companion Specifications
(e.g. EUROMAP 79, Integrated Assembly Solutions (e.g. gripper), Machine Vision).

The VDMA Robotics Initiative is a working group within VDMA Robotics and was formed for the creation of this
companion specification. The following members were actively involved in creating this document:

– ABB Automation GmbH

– Beckhoff Automation GmbH & Co. KG

– ENGEL AUSTRIA GmbH

– EPSON Deutschland GmbH

– fortiss – Forschungsinstitut des Freistaats Bayern

– Fraunhofer IGCV

– KEBA AG

– KraussMaffei Automation GmbH

– KUKA Deutschland GmbH

– Mitsubishi Electric Europe B.V.

Release 1.00 11 OPC 40010-1: Vertical Integration

– SIEMENS AG

– Unified Automation GmbH

– YASKAWA Europe GmbH

The following members provided further input for the working group:

– AUDI AG

– B+R automatizace, spol. s r.o.

– Daimler AG

– Microsoft Corporation

– Volkswagen AG

1 Scope

This document specifies an OPC UA Information Model for the representation of a complete motion device
system as an interface for higher-level control and evaluation systems. A motion device system consists out of
one or more motion devices, which can be any existing or future robot type (e.g. industrial robots, mobile robots),
kinematics or manipulator as well as their control units and other peripheral components.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable
for its application. For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

– ISO 8373:2012 Robots and robotic devices — Vocabulary

– ISO 10218-1:2011 Robots and robotic devices — Safety requirements for industrial robots — Part 1: Robots

– EN 81346-2:2009 Industrial systems, installations and equipment and industrial products – Structuring
principles and reference designations – Part 2: Classification of objects and codes for classes (IEC 81346-
2:2009)

– OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

– OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

– OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

– OPC 10000-8, OPC Unified Architecture - Part 8: Data Access

http://www.opcfoundation.org/UA/Part8/

– OPC 10000-100, OPC Unified Architecture - Part 100: Devices

http://www.opcfoundation.org/UA/Part100/

– OPC 10001-1, OPC Unified Architecture V1.04 - Amendment 1: AnalogItem Types

– OPC 10001-11, OPC Unified Architecture V1.04 - Amendment 11: SpatialTypes

http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part8/
http://www.opcfoundation.org/UA/Part100/

OPC 40010-1: Vertical Integration 12 Release 1.00

3 Terms, definitions and conventions

For the purposes of this document, the following terms and definitions apply.

3.1 Overview

It is assumed that the reader of this document understands the basic concepts of OPC UA information modelling
and the referenced documents. This specification will use these concepts to describe the Robotics Information
Model.

Note that OPC UA terms and terms defined in this specification are written in italics in the specification.

3.2 Terms

Table 1 – Terms and definitions

Term Definition of Term

Asset
management

The management of the maintenance of physical assets of an organization
throughout each asset's lifecycle.

Automatic mode Operational mode in which the robot control system operates in accordance with
the task programme (ISO 10218).

Axis The mechanical joint (ISO 8373). Joint is used as a synonym for axis.

Condition
monitoring

Acquisition and processing of information and data that indicate the state of a
machine over time (ISO 13372:2012).

Controller Controlling unit of one or more motion devices. A controller can be e.g. a specific
control cabinet or a PLC.

Industrial robot Automatically controlled, reprogrammable multipurpose manipulator,
programmable in three or more axes, which can be either fixed in place or mobile
for use in industrial automation applications (ISO 10218).

Industrial Robot
System

system comprising industrial robot, end effectors and any machinery, equipment,
devices, external auxiliary axes or sensors supporting the robot performing its
task (ISO 8373)

Joint See Axis definition.

Manipulator Machine in which the mechanism usually consists of a series of segments, jointed
or sliding relative to one another, for the purpose of grasping and/or moving
objects (pieces or tools) usually in several degrees of freedom (ISO 8373)

Manual mode Control state that allows for the direct control by an operator (ISO 10218).

Motion device A motion device has as least one axis and is a multifunctional manipulator
designed to move material, parts, tools or specialized devices through variable
programmed motions for the performance of a variety of tasks. Examples are an
industrial robot, positioner or mobile platform.

Motion device
system

The whole system in which one or more motion devices and one or more
controllers are integrated, e.g. a robot system.

Operating mode State of the robot control system (ISO 8373), i.e. Controller

Operational mode ISO 10218-1:2011 Ch.5.7 Operational Modes

Operator Person designated to start, monitor and stop the intended operation of a robot or
robot system (ISO 8373).

Teach pendant Hand-held unit linked to the control system with which a robot can be
programmed or moved (ISO 8373).

Release 1.00 13 OPC 40010-1: Vertical Integration

Power train The composition of switch gears, fuses, transformers, converters, drives, motors,
encoders and gears to convert power to motion of one or more axis.

Predictive
maintenance

Maintenance performed as governed by condition monitoring programmes (ISO
13372:2012)

Preventive
maintenance

Maintenance performed according to a fixed schedule, or according to a
prescribed criterion, that detects or prevents degradation of a functional structure,
system or component, in order to sustain or extend its useful life.

Protective stop Type of interruption of operation that allows a cessation of motion for
safeguarding purposes and which retains the programme logic to facilitate a
restart (ISO 10218).

Safe state A defined state of the robot which is free of hazards

Safety function A safety rated function which will signal the controller to bring motion devices to a
safe state, e.g. emergency stop, protective stop

Safety states Set of safety functions and states which are related to a motion device system.

Software Runtime software or firmware of the controller.

In ISO 8373, this is called control program, and is defined like this:

Inherent set of control instructions which defines the capabilities, actions and
responses of a robot or robot system

NOTE This type of program is usually generated before installation and can only
be modified thereafter by the manufacturer.

Task control Execution engine that loads and runs task programs. Synomyms for a task control
are a sequence control or a flow control.

Task program Program running on the task control.

From ISO 8373: Set of instructions for motion and auxiliary functions that define
the specific intended task of the robot or robot system

NOTE 1 This type of program is usually generated after the installation of the
robot and can be modified by a trained person under defined conditions.

NOTE 2 An application is a general area of work; a task is specific within the
application.

Tool center point Point defined for a given application with regards to the mechanical interface
coordinate system (ISO 8373)

User level Current assigned user role.

User roles User roles consist of specific permissions to access different features within a
software. Users can be assigned to roles.

Virtual axis Virtual axis has no power trains directly assigned.

Annex B.1 contains examples of the described terms.

https://www.iso.org/obp/ui/#iso:std:iso:13372:ed-2:v1:en:term:1.17

OPC 40010-1: Vertical Integration 14 Release 1.00

3.3 Abbreviations

Table 2 – Abbreviations and definitions

Abbreviation Definition of Abbreviation

CPU Central Processing Unit

DOF Degrees of freedom

ERP Enterprise Ressource Planning

HMI Human Machine Interface

HTTP Hypertext Transfer Protocol

MES Manufacturing Execution System

OPC Open Platform Communications

OPC UA OPC Unified Architecture

OPC UA DI OPC Unified Architecture for Devices (DI)

OPC Unified Architecture - Part 100 – Devices

PLC Programmable logic controller

PMS Preventive Maintenance System

TCP Tool center point

TCP/IP Transmission Control Protocol/Internet Protocol

TCS Tool Coordinate System

UPS Uninterruptible Power Supply

URL Uniform resource locator

URI A uniform resource identifier (URI) is a strings of characters used to identify names
or resources on the Internet. The URI describes the mechanism used to access
resources, the computers on which resources are housed and the names of the
resources on each computer.

VDMA The Mechanical Engineering Industry Association (VDMA) represents more than
3,200 member companies in the SME-dominated mechanical and systems
engineering industry in Germany and Europe.

3.4 Conventions used in this document

3.4.1 Conventions for Node descriptions

Node definitions are specified using tables (see Table 4).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the TargetNode and its
NodeClass.

– If the TargetNode is a component of the Node being defined in the table, the Attributes of the composed
Node are defined in the same row of the table.

The DataType is only specified for Variables; “[<number>]” indicates a single-dimensional array, for multi-
dimensional arrays the expression is repeated for each dimension (e.g. [2][3] for a two-dimensional array). For
all arrays the ArrayDimensions is set as identified by <number> values. If no <number> is set, the
corresponding dimension is set to 0, indicating an unknown size. If no number is provided at all the
ArrayDimensions can be omitted. If no brackets are provided, it identifies a scalar DataType and the
ValueRank is set to the corresponding value (see OPC 10000-3). In addition, ArrayDimensions is set to null or
is omitted. If it can be Any or ScalarOrOneDimension, the value is put into “{<value>}”, so either “{Any}” or
“{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value (see OPC 10000-3) and the
ArrayDimensions is set to null or is omitted. Examples are given Table 3.

https://www.copadata.com/de/hmi-scada-loesungen/human-machine-interface-hmi/
https://de.wikipedia.org/wiki/Transmission_Control_Protocol/Internet_Protocol

Release 1.00 15 OPC 40010-1: Vertical Integration

Table 3 – Examples of DataTypes

Notation Data-
Type

Value-
Rank

Array-
Dimensions

Description

Int32 Int32 -1 omitted or null A scalar Int32.

Int32[] Int32 1 omitted or {0} Single-dimensional array of Int32 with an unknown
size.

Int32[][] Int32 2 omitted or {0,0} Two-dimensional array of Int32 with unknown sizes
for both dimensions.

Int32[3][] Int32 2 {3,0} Two-dimensional array of Int32 with a size of 3 for
the first dimension and an unknown size for the
second dimension.

Int32[5][3] Int32 2 {5,3} Two-dimensional array of Int32 with a size of 5 for
the first dimension and a size of 3 for the second
dimension.

Int32{Any} Int32 -2 omitted or null An Int32 where it is unknown if it is scalar or array
with any number of dimensions.

Int32{ScalarOrOneDimension} Int32 -3 omitted or null An Int32 where it is either a single-dimensional
array or a scalar.

– The TypeDefinition is specified for Objects and Variables.

– The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified Node points with a
HasTypeDefinition Reference to the corresponding Node.

– The ModellingRule of the referenced component is provided by specifying the symbolic name of the rule in
the ModellingRule column. In the AddressSpace, the Node shall use a HasModellingRule Reference to
point to the corresponding ModellingRule Object.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType shall be
used.

Nodes of all other NodeClasses cannot be defined in the same table; therefore only the used ReferenceType,
their NodeClass and their BrowseName are specified. A reference to another part of this document points to
their definition.

Table 4 illustrates the table. If no components are provided, the DataType, TypeDefinition and ModellingRule
columns may be omitted and only a Comment column is introduced to point to the Node definition.

Table 4 – Type Definition Table

Attribute Value

Attribute name Attribute value. If it is an optional Attribute that is not set “--“ will be used.

References NodeClass BrowseName DataType TypeDefinition ModellingRule

ReferenceType
name

NodeClass
of the
TargetNode.

BrowseName of the
target Node. If the
Reference is to be
instantiated by the
server, then the
value of the target
Node’s
BrowseName is “--“.

DataType
of the
referenced
Node, only
applicable
for
Variables.

TypeDefinition of the referenced
Node, only applicable for
Variables and Objects.

Referenced
ModellingRule of
the referenced
Object.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex that is containing components by themselves. The TypeDefinition,
NodeClass, DataType and ModellingRule can be derived from the type definitions, and the symbolic name can
be created as defined in chapter 3.4.3.1. Therefore, those containing components are not explicitly specified;
they are implicitly specified by the type definitions.

OPC 40010-1: Vertical Integration 16 Release 1.00

3.4.2 NodeIds and BrowseNames

3.4.2.1 NodeIds

The NodeIds of all Nodes described in this standard are only symbolic names. Annex A defines the actual
NodeIds.

The symbolic name of each Node defined in this specification is its BrowseName, or, when it is part of another
Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In this case “part of” means that
the whole has a HasProperty or HasComponent Reference to its part. Since all Nodes not being part of another
Node have a unique name in this specification, the symbolic name is unique.

The namespace for all NodeIds defined in this specification is defined in Annex A. The namespace for this
NamespaceIndex is Server-specific and depends on the position of the namespace URI in the server
namespace table.

Note that this specification not only defines concrete Nodes, but also requires that some Nodes shall be
generated, for example one for each Session running on the Server. The NodeIds of those Nodes are Server-
specific, including the namespace. But the NamespaceIndex of those Nodes cannot be the NamespaceIndex
used for the Nodes defined in this specification, because they are not defined by this specification but generated
by the Server.

3.4.2.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this specification is specified in the tables defining
the Nodes. The NamespaceIndex for all BrowseNames defined in this specification is defined in Annex A.

If the BrowseName is not defined by this specification, a namespace index prefix like ‘0:EngineeringUnits’ or
‘2:DeviceRevision’ is added to the BrowseName. This is typically necessary if a Property of another specification
is overwritten or used in the OPC UA types defined in this specification. Table 60 provides a list of namespaces
and their indexes as used in this specification.

3.4.3 Common Attributes

3.4.3.1 General

The Attributes of Nodes, their DataTypes and descriptions are defined in OPC 10000-3. Attributes not marked
as optional are mandatory and shall be provided by a Server. The following tables define if the Attribute value
is defined by this specification or if it is server-specific.

For all Nodes specified in this specification, the Attributes named in Figure 5 shall be set as specified in the
table.

Table 5 – Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to
the BrowseName of the Node for the LocaleId “en”. Whether the server provides translated
names for other LocaleIds is server-specific.

Description Optionally a server-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

NodeId The NodeId is described by BrowseNames as defined in 3.4.2.1.

WriteMask Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it shall
set all non-server-specific Attributes to not writable. For example, the Description Attribute may
be set to writable since a Server may provide a server-specific description for the Node. The
NodeId shall not be writable, because it is defined for each Node in this specification.

UserWriteMask Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask
Attribute apply.

RolePermissions Optionally server-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is server-
specifc and depend on the RolePermissions Attribute (if provided) and the current Session.

AccessRestrictions Optionally server-specific access restrictions can be provided.

Release 1.00 17 OPC 40010-1: Vertical Integration

3.4.3.2 Objects

For all Objects specified in this specification, the Attributes named in Table 6 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 6 – Common Object Attributes

Attribute Value

EventNotifier Whether the Node can be used to subscribe to Events or not is server-specific.

3.4.3.3 Variables

For all Variables specified in this specification, the Attributes named in Table 7 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 7 – Common Variable Attributes

Attribute Value

MinimumSamplingInterval Optionally, a server-specific minimum sampling interval is provided.

AccessLevel The access level for Variables used for type definitions is server-specific, for all other Variables
defined in this specification, the access level shall allow reading; other settings are server-
specific.

UserAccessLevel The value for the UserAccessLevel Attribute is server-specific. It is assumed that all Variables
can be accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is server-specific; otherwise it shall
represent the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-
specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the Variable.

Historizing The value for the Historizing Attribute is server-specific.

AccessLevelEx If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0, meaning
that read and write operations on an individual Variable are atomic, and arrays can be partly
written.

3.4.3.4 VariableTypes

For all VariableTypes specified in this specification, the Attributes named in Table 8 be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 8 – Common VariableType Attributes

Attributes Value

Value Optionally a server-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-
specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the VariableType.

3.4.3.5 Methods

For all Methods specified in this specification, the Attributes named in Table 9 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

OPC 40010-1: Vertical Integration 18 Release 1.00

Table 9 – Common Method Attributes

Attributes Value

Executable All Methods defined in this specification shall be executable (Executable Attribute set to “True”),
unless it is defined differently in the Method definition.

UserExecutable The value of the UserExecutable Attribute is server-specific. It is assumed that all Methods can be
executed by at least one user.

3.4.3.6 Expanding conventions

For the following illustrations, the legend is as follows:

Object

VariableTypeVariable

ObjectType

Method ReferenceType

View DataType

Symmetric

Reference
HasType

Definition

Asymmetric

Reference

Hierarchical

Reference

Has

Component

Has

Property

Has

SubType

Figure 1 – OPC UA standard definitions

Additional definitions:

IsSubTypeOf

ObjectType

IsSubTypeOf

VariableType

Mandatory Object

Optional Object

MandatoryPlaceholder

Object

OptionalPlaceholder

Object

Mandatory

Variable

Optional

Variable

Figure 2 – OPC UA and additional definitions

Table 10 describes the additional definitions.

Release 1.00 19 OPC 40010-1: Vertical Integration

Table 10 – Description of additional definitions

Node element Graphical representation Definition of node element

Mandatory Object Rectangular Frame A mandatory object with its type
definition

Optional Object Rectangular bold dashed Frame An optional object with its type
definition

Mandatory Placeholder Object Rectangular bold Frame A mandatory placeholder for
objects with its type definition

Optional Placeholder Object Rectangular dotted Frame An optional placeholder for
objects with its type definition

ObjectType Rectangular Frame with shadow An object type with its type
definition

VariableType Rounded rectangular Frame with
shadow

A variable type with its type
definition

Mandatory Variable Rectangular Frame with rounded
corners

A mandatory variable with its type
definition

Optional Variable Dotted rectangular Frame with
rounded corners

An optional variable with its type
definition

3.4.3.7 Handling of not supported properties

In case of not supported Properties the following default shall be provided:

– Properties with DataType String: empty string

– Properties with DataType LocalizedText: empty text field

– RevisionCounter Property: - 1

4 General information to OPC Robotics and OPC UA

4.1 Introduction to OPC Robotics

The OPC Robotics specification describes an information model, which aims to cover all current and future
robotic systems such as:

– Industrial robots

– Mobile robots

– Several control units

– Peripheral devices, which do not have their own OPC UA server

Part 1 provides information for asset management and condition monitoring. In future parts, the information
model will be extended to cover more use cases.

The following functionalities are covered:

– Provision of asset configuration and runtime data of a running motion device system and its components
e.g. manipulators, axes, motors, controllers and software

Following functions are not included and might be covered in future parts:

– A messaging mechanism covered by events and alarms to provide conditions

OPC 40010-1: Vertical Integration 20 Release 1.00

– A state machine to inform about the status of task controls and to interact via methods

– The possibility for the operator to store customer specific information inside the motion device system e.g.
location, cost center, ERP data, ...

4.2 Introduction to OPC Unified Architecture

4.2.1 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal communication protocol. While
there are numerous communication solutions available, OPC UA has key advantages:

– A state of art security model (see OPC 10000-2).

– A fault tolerant communication protocol.

– An information modelling Framework that allows application developers to represent their data in a way that
makes sense to them.

OPC UA has a broad scope which delivers for economies of scale for application developers. This means that
a larger number of high quality applications at a reasonable cost are available.

The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process information
locally and then provide that data in a consistent format to any application requesting data - ERP, MES, PMS,
Maintenance Systems, HMI, Smartphone or a standard Browser, for example. For a more complete overview
see OPC 10000-1.

4.2.2 Basics of OPC UA

As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP, Web Sockets.

As an extensible standard, OPC UA provides a set of Services (see OPC 10000-4) and a basic information
model Framework. This Framework provides an easy manner for creating and exposing vendor defined
information in a standard way. More importantly all OPC UA Clients are expected to be able to discover and
use vendor-defined information. This means OPC UA users can benefit from the economies of scale that come
with generic visualization and historical applications. This specification is an example of an OPC UA Information
Model designed to meet the needs of developers and users.

OPC UA Clients can be any consumer of data from another device on the network to browser based thin clients
and ERP systems. The full scope of OPC UA applications is shown in Figure 3.

Figure 3 – The Scope of OPC UA within an Enterprise

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Application

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to

Device

Control to Device

Network

Integration

Integration

with

ERP and MES

OPC
UA
Clients

OPC
UA
Servers
&
Clients

Release 1.00 21 OPC 40010-1: Vertical Integration

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling lost
messages, failover, heartbeat, etc. With its binary encoded data, it offers a high-performing data exchange
solution. Security is built into OPC UA as security requirements become more and more important especially
since environments are connected to the office network or the internet and attackers are starting to focus on
automation systems.

4.2.3 Information modelling in OPC UA

4.2.3.1 Concepts

OPC UA provides a Framework that can be used to represent complex information as Objects in an
AddressSpace which can be accessed with standard services. These Objects consist of Nodes connected by
References. Different classes of Nodes convey different semantics. For example, a Variable Node represents
a value that can be read or written. The Variable Node has an associated DataType that can define the actual
value, such as a string, float, structure etc. It can also describe the Variable value as a variant. A Method Node
represents a function that can be called. Every Node has a number of Attributes including a unique identifier
called NodeId and non-localized name called BrowseName. An Object representing a ‘Reservation’ is shown in
Figure 4.

Reservation

Who

When

First Name
“John”

Last Name
“Smith”

Start
“2:00PM”

End
“4:00PM”

Cancel

Object Nodes
convey semantics

 and structure

Method Nodes
define complex

behaviors

Variable Nodes
provide access to data

Figure 4 – A Basic Object in an OPC UA Address Space

Object and Variable Nodes represent instances and they always reference a TypeDefinition (ObjectType or
VariableType) Node which describes their semantics and structure. Figure 5 illustrates the relationship between
an instance and its TypeDefinition.

The type Nodes are templates that define all of the children that can be present in an instance of the type. In
the example in Figure 5 the PersonType ObjectType defines two children: First Name and Last Name. All
instances of PersonType are expected to have the same children with the same BrowseNames. Within a type
the BrowseNames uniquely identifies the children. This means Client applications can be designed to search
for children based on the BrowseNames from the type instead of NodeIds. This eliminates the need for manual
reconfiguration of systems if a Client uses types that multiple Servers implement.

OPC 40010-1: Vertical Integration 22 Release 1.00

OPC UA also supports the concept of sub-typing. This allows a modeller to take an existing type and extend it.
There are rules regarding sub-typing defined in OPC 10000-3, but in general they allow the extension of a given
type or the restriction of a DataType. For example, the modeller may decide that the existing ObjectType in
some cases needs an additional Variable. The modeller can create a subtype of the ObjectType and add the
Variable. A Client that is expecting the parent type can treat the new type as if it was of the parent type.
Regarding DataTypes, subtypes can only restrict. If a Variable is defined to have a numeric value, a sub type
could restrict it to a float.

Who

First Name
“John”

Last Name
“Smith”

First Name
[String]

Last Name
[String]

Middle Name
“Jacob”

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

Semantics: An instance of PersonType represents a human
Structure: An instance of PersonType has a First Name and a Last Name

BaseObjectType

PersonType

Figure 5 – The Relationship between Type Definitions and Instances

References allow Nodes to be connected in ways that describe their relationships. All References have a
ReferenceType that specifies the semantics of the relationship. References can be hierarchical or non-
hierarchical. Hierarchical references are used to create the structure of Objects and Variables. Non-hierarchical
are used to create arbitrary associations. Applications can define their own ReferenceType by creating subtypes
of an existing ReferenceType. Subtypes inherit the semantics of the parent but may add additional restrictions.
Figure 6 depicts several References, connecting different Objects.

Release 1.00 23 OPC 40010-1: Vertical Integration

Joe Sam Dogs Cats

Animals

OrganizesOrganizes HasClassification HasClassification

Kennel #2

Owns

PoodleBreeds

HasClassification

Farmers

Siamese

HasClassification

Fido HasBreedLivesIn

Organizes

Owns

Has

Classification

Non-

Hierarchical

Breeds

HasBreed

LivesIn

Reference Types
can be created

 from other reference types

They can be used to
show hierarchies

 or just relationships

Figure 6 – Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specification. The notation is summarized
in Figure 7. UML representations can also be used; however, the OPC UA notation is less ambiguous because
there is a direct mapping from the elements in the figures to Nodes in the AddressSpace of an OPC UA Server.

Object Variable Method View

<TypeName> <TypeName> <TypeName>

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

HasEventSource
HasComponent

HasProperty

HasTypeDefinition

HasSubtype

Figure 7 – The OPC UA Information Model Notation

OPC 40010-1: Vertical Integration 24 Release 1.00

A complete description of the different types of Nodes and References can be found in OPC 10000-3 and the
base structure is described in OPC 10000-5.

OPC UA specification defines a very wide range of functionality in its basic information model. It is not expected
that all Clients or Servers support all functionality in the OPC UA specifications. OPC UA includes the concept
of Profiles, which segment the functionality into testable certifiable units. This allows the definition of functional
subsets (that are expected to be implemented) within a companion specification. The Profiles do not restrict
functionality, but generate requirements for a minimum set of functionality (see OPC 10000-7).

4.2.3.2 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent AddressSpace.
Namespaces are used to make this possible by eliminating naming and id conflicts between information from
different sources. Namespaces in OPC UA have a globally unique string called a NamespaceUri and a locally
unique integer called a NamespaceIndex. The NamespaceIndex is only unique within the context of a Session
between an OPC UA Client and an OPC UA Server. The Services defined for OPC UA use the NamespaceIndex
to specify the Namespace for qualified values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and QualifiedNames.
NodeIds are globally unique identifiers for Nodes. This means the same Node with the same NodeId can appear
in many Servers. This, in turn, means Clients can have built in knowledge of some Nodes. OPC UA Information
Models generally define globally unique NodeIds for the TypeDefinitions defined by the Information Model.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the BrowseNames of
Nodes and allow the same names to be used by different information models without conflict. TypeDefinitions
are not allowed to have children with duplicate BrowseNames; however, instances do not have that restriction.

4.2.3.3 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an Information Model by
defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that represent the concepts used in the
vertical market, and potentially also well-defined Objects as entry points into the AddressSpace.

5 Use Cases

Part 1 of this companion specification describes an interface that provides access to asset management and
condition monitoring data of motion device systems. Based on the provided data the following use cases are
supported:

1) Supervision: With the provided data by the companion specification the robot system can be supervised
and monitored. Functional analysis of individual robot systems within the factory ground is possible. During
production phase the companion specification provides data about the operational and safety states as
well as process data.

2) Condition monitoring: Condition monitoring is the process of determining the condition of machinery while
in operation, in order to identify a significant change which is indicative of a developing fault. This is a major
component of Predictive Maintenance where the maintenance is scheduled to shorten the downtime. The
typical parameters needed for condition monitoring like motor temperature, load, on time are provided by
the companion specification for robotics.

3) Asset management: The companion specification for robotics provides detailed information of the main
electrical and mechanical parts like part number, brand name, serial number etc. With these data an
effective maintenance is possible because the technican knows in adcance which parts need to be changed
and can be prepared.

Figure 8 shows the communication structure with OPC UA.

Release 1.00 25 OPC 40010-1: Vertical Integration

Figure 8 – Communication structure with OPC UA

Figure 9 – OPC Robotics describes the semantic self-description

OPC 40010-1: Vertical Integration 26 Release 1.00

6 OPC Robotics Information Model overview

The MotionDeviceSystemType as a subtype of the ComponentType (OPC UA for Devices) is used as the root
object representing the motion device system with all its subcomponents, see Figure 10.

OPC UA for Devices
2:DeviceType

OPC UA
BaseObjectType

OPC UA for Robotics

Part 1

Part 2

Part n

MotionDevice

SystemType

2:ComponentType

….

….….

….

Figure 10 – OPC Robotics top level view

Figure 11 shows the main objects and the relations between them in an abstract view.

In Part 1 in general all variables and properties are read only unless stated otherwise in the description. A
vendor can decide to provide variables or properties as writeable by client side as well.

Release 1.00 27 OPC 40010-1: Vertical Integration

<ControllerIdentifier>

<MotionDeviceIdentifier>

<SafetyStateIdentifier>SafetyStates

MotionDevices

Controllers

2:ComponentName

<AxisIdentifier>Axes

2:ComponentName

ParameterSet

MotionDeviceType

<PowerTrainIdentifier>PowerTrains

2:ComponentName

SafetyStateType

EmergencyStop

Functions

ProtectiveStop

Functions

ParameterSet

Components <ComponentIdentifier>

TaskControls <TaskControlIdentifier>

<SoftwareIdentifier>Software

2:Manufacturer

2:ComponentName

ControllerType

2:Manufacturer

OperationalMode
UpsState

InControl

TaskProgramNameParameterSet

2:ComponentName

TaskControlType

MotionDeviceSystemType

ParameterSet

Additional

Components

<AddtionalComponent

Identifier>

2:Model

2:Model
<ProtectiveStopFunction

Identifier>

<EmergencyStopFunction

Identifier>

Figure 11 – OPC Robotics overview

OPC 40010-1: Vertical Integration 28 Release 1.00

7 OPC UA ObjectTypes

7.1 MotionDeviceSystemType ObjectType Definition

7.1.1 Overview

The MotionDeviceSystemType provides a representation of a motion device system as an entry point to
the OPC UA device set. At least one instance of a MotionDeviceSystemType must be instantiated in
the DeviceSet. This instance organises the information model of a complete robotics system using
instances of the described ObjectTypes.

ControllerType:

<ControllerIdentifier>

MotionDeviceType:

<MotionDeviceIdentifier>

SafetyStateType:

<SafetyStatesIdentifier>
FolderType:

SafetyStates

FolderType:

MotionDevices

FolderType::

Controllers

MotionDeviceSystemType

2:ComponentType
PropertyType:

2:ComponentName

Figure 12 – Overview MotionDeviceSystemType

7.1.2 ObjectType definition

Table 11 – MotionDeviceSystemType Definition

Attribute Value

BrowseName MotionDeviceSystemType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasComponent Object MotionDevices FolderType Mandatory

HasComponent Object Controllers FolderType Mandatory

HasComponent Object SafetyStates FolderType Mandatory

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:ComponentName LocalizedText PropertyType Optional

Release 1.00 29 OPC 40010-1: Vertical Integration

Table 12 – TypeDefinition of MotionDevices of MotionDeviceSystemType

Attribute Value

BrowseName MotionDevices

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <MotionDeviceIdentifier> MotionDeviceType MandatoryPlaceholder

Table 13 – TypeDefinition of Controllers of MotionDeviceSystemType

Attribute Value

BrowseName Controllers

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <ControllerIdentifier> ControllerType MandatoryPlaceholder

Table 14 – TypeDefinition of SafetyStates of MotionDeviceSystemType

Attribute Value

BrowseName SafetyStates

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <SafetyStateIdentifier> SafetyStateType MandatoryPlaceholder

7.1.3 ObjectType description

A motion device system may consist of multiple motion devices, controllers and safety systems. References are
used to describe the relations between those subsystems. Examples are described in Annex B.1.

7.1.3.1 Variable ComponentName

The ComponentName property provides a user writeable name provided by the vendor, integrator or user of
the device. The ComponentName may be a default name given by the vendor. This property is defined by
ComponentType defined in OPC UA DI.

7.1.3.2 Object MotionDevices

MotionDevices is a container for one or more instances of the MotionDeviceType.

7.1.3.3 Object Controllers

Controllers is a container for one or more instances of the ControllerType.

7.1.3.4 Object SafetyStates

SafetyStates is a container for one or more instances of the SafetyStatesType.

OPC 40010-1: Vertical Integration 30 Release 1.00

7.2 MotionDeviceType ObjectType Definition

7.2.1 Overview

The MotionDeviceType describes one independent motion device, e.g. a manipulator, a turn table or a linear
axis. Examples are described in Annex B.1.

A MotionDevice shall have at least one axis and one power train. The MotionDeviceType is formally
defined in Figure 14.

AxisType:

<AxisIdentifier>
FolderType:

Axes

BaseDataVariableType:

OnPath

PropertyType:

2:Manufacturer

PropertyType:

2:Model

BaseObjectType:

2:ParameterSet

BaseDataVariableType:

InControl

BaseDataVariableType:

SpeedOverride

PropertyType:

MotionDeviceCategory

2:ComponentType

MotionDeviceType

PowerTrainType:

<PowerTrainIdentifier>
FolderType:

PowerTrains

LoadType:

FlangeLoad

PropertyType:

2:AssetId

PropertyType:

2:DeviceManual

PropertyType:

2:ComponentName

PropertyType:

2:SerialNumber

PropertyType:

2:ProductCode

FolderType:

AdditionalComponents
2:ComponentType:

<AdditionalComponentIdentifier>

Figure 13 – Overview MotionDeviceType

Release 1.00 31 OPC 40010-1: Vertical Integration

7.2.2 ObjectType definition

Table 15 – MotionDeviceType Definition

Attribute Value

BrowseName MotionDeviceType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasProperty Variable 2:SerialNumber String PropertyType Mandatory

HasProperty Variable 2:Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable 2:Model LocalizedText PropertyType Mandatory

HasProperty Variable 2:ProductCode String PropertyType Mandatory

HasProperty Variable MotionDeviceCategory MotionDeviceCategoryEnumeration PropertyType Mandatory

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

HasComponent Object Axes FolderType Mandatory

HasComponent Object PowerTrains FolderType Mandatory

HasComponent Object FlangeLoad LoadType Optional

HasComponent Object AdditionalComponents FolderType Optional

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:AssetId String PropertyType Optional

HasProperty Variable 2:DeviceManual String PropertyType Optional

HasProperty Variable 2:ComponentName LocalizedText PropertyType Optional

7.2.3 ObjectType description

7.2.3.1 Variable SerialNumber

The SerialNumber property is a unique production number assigned by the manufacturer of the device. This is
often stamped on the outside of the device and may be used for traceability and warranty purposes. This
property is derived from ComponentType defined in OPC UA DI.

7.2.3.2 Variable Manufacturer

The Manufacturer property provides the name of the company that manufactured the device. This property is
derived from ComponentType defined in OPC UA DI.

7.2.3.3 Variable Model

The Model property provides the name of the product. This property is derived from ComponentType defined in
OPC UA DI.

7.2.3.4 Variable ProductCode

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC UA DI.

7.2.3.5 Variable AssetId

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The ID is provided by the vendor, integrator or user of the device. It contains typically an identifier in a branch,
use case or user specific naming scheme.

This could be for example a reference to an electric scheme. For electric schemes typically EN 81346-2 is used.

An use case could be to build up a location oriented view in a spare part management client software. It enables
to identify parts with the same article number which is not possible if this entry is not used.

This property is defined by ComponentType defined in OPC UA DI.

OPC 40010-1: Vertical Integration 32 Release 1.00

7.2.3.6 Variable DeviceManual

The DeviceManual property allows specifying an address of the user manual for the device. It may be a
pathname in the file system or a URL (Web address). This property is defined by ComponentType defined in
OPC UA DI.

7.2.3.7 Variable ComponentName

The ComponentName property provides a user writeable name provided by the vendor, integrator or user of
the device. The ComponentName may be a default name given by the vendor. This property is defined by
ComponentType defined in OPC UA DI.

7.2.3.8 Variable MotionDeviceCategory

The variable MotionDeviceCategory provides the kind of motion device defined by
MotionDeviceCategoryEnumeration based on ISO 8373.

Table 16 – MotionDeviceCategoryEnumeration

MotionDeviceCategoryEnumeration

EnumString Value Description

OTHER 0 Any motion-device which is not defined by the MotionDeviceCategoryEnumeration

ARTICULATED_ROBOT 1 This robot design features rotary joints and can range from simple two joint
structures to 10 or more joints. The arm is connected to the base with a twisting
joint. The links in the arm are connected by rotary joints.

SCARA_ROBOT 2 Robot has two parallel rotary joints to provide compliance in a selected plane

CARTESIAN_ROBOT 3 Cartesian robots have three linear joints that use the Cartesian coordinate system
(X, Y, and Z). They also may have an attached wrist to allow for rotational
movement. The three prismatic joints deliver a linear motion along the axis.

SPHERICAL_ROBOT 4 The arm is connected to the base with a twisting joint and a combination of two
rotary joints and one linear joint. The axes form a polar coordinate system and
create a spherical-shaped work envelope.

PARALLEL_ROBOT 5 These spider-like robots are built from jointed parallelograms connected to a
common base. The parallelograms move a single end of arm tooling in a dome-
shaped work area.

CYLINDRICAL_ROBOT 6 The robot has at least one rotary joint at the base and at least one prismatic joint
to connect the links. The rotary joint uses a rotational motion along the joint axis,
while the prismatic joint moves in a linear motion. Cylindrical robots operate within
a cylindrical-shaped work envelope.

7.2.3.9 Object ParameterSet

Table 17 – ParameterSet of MotionDeviceType

Attribute Value

BrowseName AxisType

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Variable OnPath Boolean BaseDataVariableType Optional

HasComponent Variable InControl Boolean BaseDataVariableType Optional

HasComponent Variable SpeedOverride Double BaseDataVariableType Mandatory

Description of ParameterSet of MotionDeviceType:

– Variable OnPath: The variable OnPath is true if the motion device is on or near enough the planned program
path such that program execution can continue. If the MotionDevice deviates too much from this path in
case of errors or an emergency stop, this value becomes false. If OnPath is false, the motion device needs
repositioning to continue program execution.

– Variable InControl: The variable InControl provides the information if the actuators (in most cases a motor)
of the motion device are powered up and in control: "true". The motion device might be in a standstill.

Release 1.00 33 OPC 40010-1: Vertical Integration

– Variable SpeedOverride: The SpeedOverride provides the current speed setting in percent of programmed
speed (0 - 100%).

7.2.3.10 Object Axes

Axes is a container for one or more instances of the AxisType.

Table 18 – TypeDefinition of Axes of MotionDeviceType

Attribute Value

BrowseName Axes

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <AxisIdentifier> AxisType MandatoryPlaceholder

7.2.3.11 Object PowerTrains

PowerTrains is a container for one or more instances of the PowerTrainType.

Table 19 –TypeDefinition of PowerTrains of MotionDeviceType

Attribute Value

BrowseName PowerTrains

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <PowerTrainIdentifier> PowerTrainType MandatoryPlaceholder

7.2.3.12 Object FlangeLoad

FlangeLoad provides data for the load at the flange or mounting-point of the motion device.

7.2.3.13 Object AdditionalComponents

AdditionalComponents is a container for one or more instances of subtypes of ComponentType defined in OPC
UA DI. The listed components are installed at the motion device, e.g. an IO-board.

NOTE: Components like motors or gears of a motion device are placed inside the power train object and not
inside this AdditionalComponents container.

Table 20 – TypeDefinition of AdditionalComponents of MotionDeviceType

Attribute Value

BrowseName AdditionalComponents

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <AdditionalComponentIden
tifier>

 2:ComponentType MandatoryPlaceholder

The AuxiliaryComponentType and DriveType are the only subtypes of ComponentType for use in this container
which are described in this specification. The intention is to integrate inside this container devices which are
defined in other companion specifications using DI.

OPC 40010-1: Vertical Integration 34 Release 1.00

7.3 AxisType ObjectType Definition

7.3.1 Overview

The AxisType describes an axis of a motion device. It is formally defined in Table 21.

AnalogUnitType:

ActualPosition

AnalogUnitType:

ActualSpeed

BaseObjectType:

2:ParameterSet

PropertyType:

MotionProfile

LoadType:

AdditionalLoad

AxisType

2:ComponentType
PropertyType:

2:AssetId

AnalogUnitType:

ActualAcceleration

Figure 14 – Overview AxisType

7.3.2 ObjectType definition

Table 21 – AxisType Definition

Attribute Value

BrowseName AxisType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasProperty Variable MotionProfile AxisMotionProfileEnumeration PropertyType Mandatory

HasComponent Object AdditionalLoad LoadType

Optional

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

Requires Object <PowerTrainIdentifier> PowerTrainType OptionalPlaceholder

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:AssetId String PropertyType Optional

Release 1.00 35 OPC 40010-1: Vertical Integration

7.3.3 ObjectType description

7.3.3.1 Variable AssetId

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The ID is provided by the vendor, integrator or user of the device. It contains typically an identifier in a branch,
use case or user specific naming scheme.

This could be for example a reference to an electric scheme. For electric schemes typically EN 81346-2 is used.

The AssetID of the AxisType provides a manufacturer-specific axis identifier within the control system.

This property is defined by ComponentType defined in OPC UA DI.

7.3.3.2 Variable MotionProfile

The MotionProfile property provides the kind of axis motion as defined by the AxisMotionProfileEnumeration.

Table 22 – AxisMotionProfileEnumeration

AxisMotionProfileEnumeration

EnumString Value Description

OTHER 0 Any motion-profile which is not defined by the AxisMotionProfileEnumeration

ROTARY 1 Rotary motion is a rotation along a circular path with defined limits. Motion
movement is not going always in the same direction. Control unit is mainly degree.

ROTARY_ENDLESS 2 Rotary motion is a rotation along a circular path with no limits. Motion movement
is going endless in the same direction. Control unit is mainly degree.

LINEAR 3 Linear motion is a one dimensional motion along a straight line with defined limits.
Motion movement is not going always in the same direction. Control unit is mainly
mm.

LINEAR_ENDLESS 4 Linear motion is a one dimensional motion along a straight line with no limits.
Motion movement is going endless in the same direction. Control unit is mainly
mm.

7.3.3.3 Variable AdditionalLoad

AdditionalLoad provides data for the load that is mounted on this axis, e.g., a transformer for welding.

7.3.3.4 Objekt ParameterSet

Table 23 – ParameterSet of AxisType

Attribute Value

BrowseName AxisType

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Variable ActualPosition Double AnalogUnitType Mandatory

HasComponent Variable ActualSpeed Double AnalogUnitType Optional

HasComponent Variable ActualAcceleration Double AnalogUnitType Optional

Description of ParameterSet of AxisType:

– Variable ActualPosition: The ActualPosition variable provides the current position of the axis and may have
limits. If the axis has physical limits, the EURange property of the AnalogUnitType shall be provided.

– Variable ActualSpeed: The ActualSpeed variable provides the axis speed. Applicable speed limits of the
axis shall be provided by the EURange property of the AnalogUnitType

– Variable ActualAcceleration: The ActualAcceleration variable provides the axis acceleration. Applicable
acceleration limits of the axis shall be provided by the EURange property of the AnalogUnitType.

OPC 40010-1: Vertical Integration 36 Release 1.00

7.3.3.5 Reference Requires

The Requires reference provides the relationship of axes to power trains. For complex kinematics this does not
need to be a one to one relationship, because more than one power train might influence the motion of one
axis. This reference connects all power trains to an axis that must be actively driven when only this axis should
move and all other axes should stand still.

Virtual axes that are not actively driven by a power train do not have this reference. The InverseName is
IsRequiredBy.

7.4 PowerTrainType ObjectType Definition

7.4.1 Overview

The PowerTrainType represents instances of power trains of a motion device and is formally defined in Table
24. A power train typically consists of one motor and gear to provide the required torque. Often there is a one-
to-one relation between axes and power trains, but it is also possible to have axis coupling and thus one power
train can move multiple axes and one axis can be moved by multiple power trains. One power train can have
multiple drives, motors and gears when these components move logically the same axes, for example in a
master/slave setup. Examples are described in Annex B.1.

PowerTrainType

GearType

<GearIdentifier>

MotorType:

<MotorIdentifier>

2:ComponentType
PropertyType:

2:ComponentName

Figure 15 – Overview PowerTrainType

7.4.2 ObjectType definition

Table 24 – PowerTrainType Definition

Attribute Value

BrowseName PowerTrainType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasComponent Object <MotorIdentifier> MotorType MandatoryPlaceholder

HasComponent Object <GearIdentifier> GearType OptionalPlaceholder

Moves Object <AxisIdentifier> AxisType OptionalPlaceholder

HasSlave Object <PowerTrainIdentifier> PowerTrainType OptionalPlaceholder

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:ComponentName LocalizedText PropertyType Optional

Release 1.00 37 OPC 40010-1: Vertical Integration

7.4.3 ObjectType description

7.4.3.1 Variable ComponentName

The ComponentName property provides a user writeable name provided by the vendor, integrator or user of
the device. The ComponentName may be a default name given by the vendor.

The ComponentName of the PowerTrainType provides a manufacturer-specific power train identifier within the
control system.

This property is defined by ComponentType defined in OPC UA DI.

7.4.3.2 Object <MotorIdenfifier>

<MotorIdentifier> indicates that a power train contains one or more motors represented by MotorType instances.

7.4.3.3 Object <GearIdentifier>

<GearIdentifier> indicates that a power train may contain one or more gears represented by GearType
instances.

7.4.3.4 Reference Moves

Moves is a reference to provide the relationship of power trains to axes. For complex kinematics this does not
need to be a one to one relationship, because a power train might influence the motion of more than one axis.
This reference connects all axis to a power train that that move when only this power train moves and all other
powertains stand still.

The InverseName is IsMovedBy.

7.4.3.5 Reference HasSlave

HasSlave is a reference to provide the master-slave relationship of power trains which provide torque for a
common axis. The InverseName is IsSlaveOf.

7.5 MotorType ObjectType Definition

7.5.1 Overview

The MotorType describes a motor in a power train. It is formally defined in Table 25.

OPC 40010-1: Vertical Integration 38 Release 1.00

AnalogUnitType:

MotorTemperature

2:ParameterSet

BaseDataVariableType:

BrakeReleased

BaseDataVariableType:

EffectiveLoadRate

2:ComponentType

MotorType

PropertyType:

2:SerialNumber

PropertyType:

2:Manufacturer

PropertyType:

2:Model

PropertyType:

2:ProductCode

PropertyType:

2:AssetId

Figure 16 – Overview MotorType

7.5.2 ObjectType definition

Table 25 – MotorType Definition

Attribute Value

BrowseName MotorType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasProperty Variable 2:SerialNumber String PropertyType Mandatory

HasProperty Variable 2:Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable 2:Model LocalizedText PropertyType Mandatory

HasProperty Variable 2:ProductCode String PropertyType Mandatory

IsConnectedTo Object <GearIdentifier> GearType OptionalPlaceholder

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

IsDrivenBy Object <DriveIdentifiier> BaseObjectType OptionalPlaceholer

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:AssetId String PropertyType Optional

Release 1.00 39 OPC 40010-1: Vertical Integration

7.5.3 ObjectType description

7.5.3.1 Variable SerialNumber

The SerialNumber property is a unique production number assigned by the manufacturer of the device. This is
often stamped on the outside of the device and may be used for traceability and warranty purposes. This
property is derived from ComponentType defined in OPC UA DI.

7.5.3.2 Variable Manufacturer

The Manufacturer property provides the name of the company that manufactured the device. This property is
derived from ComponentType defined in OPC UA DI.

7.5.3.3 Variable Model

The Model property provides the name of the product. This property is derived from ComponentType defined in
OPC UA DI.

7.5.3.4 Variable ProductCode

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC UA DI.

7.5.3.5 Variable AssetId

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The ID is provided by the vendor, integrator or user of the device. It contains typically an identifier in a branch,
use case or user specific naming scheme.

This could be for example a reference to an electric scheme. For electric schemes typically EN 81346-2 is used.

An use case could be to build up a location oriented view in a spare part management client software. It enables
to identify parts with the same article number which is not possible if this entry is not used.

This property is defined by ComponentType defined in OPC UA DI.

7.5.3.6 Reference IsConnectedTo

IsConnectedTo is a reference to provide the relationship between a motor and a gear of a power train.

7.5.3.7 Reference IsDrivenBy

IsDrivenBy is a reference to provide a relationship from a motor to a drive, which can be a multi-slot-drive or
single slot drive. The TypeDefinition of the reference destination as BaseObjectType provides the possibility to
point to a slot of a mulit-slot-drive or a motor-integrated-drive. If this reference points to a physical drive (and
not a drive slot) it should point to an DriveType.

Annex B.1.9 shows different possibilities of usage.

7.5.3.8 Object ParameterSet

Table 26 – ParameterSet of MotorType

OPC 40010-1: Vertical Integration 40 Release 1.00

Attribute Value

BrowseName ParameterSet

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Variable BrakeReleased Boolean BaseDataVariableType Optional

HasComponent Variable MotorTemperature Double AnalogUnitType Mandatory

HasComponent Variable EffectiveLoadRate UInt16 BaseDataVariableType Optional

Description of ParameterSet of MotorType:

– Variable BrakeReleased: The BrakeReleased is an optional variable used only for motors with brakes. If
BrakeReleased is TRUE the motor is free to run. FALSE means that the motor shaft is locked by the brake.

– Variable MotorTemperature: The MotorTemperature provides the temperature of the motor. If there is no
temperature sensor the value is set to “null”.

– Variable EffectiveLoadRate: EffectiveLoadRate is expressed as a percentage of maximum continuous load.
The Joule integral is typically used to calculate the current load, i.e.:

𝐼2𝑡 = ∫ 𝑖2 𝑑𝑡
𝑡1

𝑡0

 Duration should be defined and documented by the vendor.

7.6 GearType ObjectType Definition

7.6.1 Overview

The GearType describes a gear in a power train, e.g. a gear box or a spindle. It is formally defined in Table 27.

2:ComponentType

GearType

PropertyType:

2:SerialNumber

PropertyType:

2:Manufacturer

PropertyType:

2:Model

PropertyType:

2:ProductCode

PropertyType:

2:AssetId

RationalNumberType

GearRatio

BaseDataVariableType:

Pitch

Figure 17 – Overview GearType

Release 1.00 41 OPC 40010-1: Vertical Integration

OPC 40010-1: Vertical Integration 42 Release 1.00

7.6.2 ObjectType definition

Table 27 – GearType Definition

Attribute Value

BrowseName GearType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasProperty Variable 2:SerialNumber String PropertyType Mandatory

HasProperty Variable 2:Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable 2:Model LocalizedText PropertyType Mandatory

HasProperty Variable 2:ProductCode String PropertyType Mandatory

HasComponent Variable GearRatio RationalNumber RationalNumberType Mandatory

HasComponent Variable Pitch Double BaseDataVariableType Optional

IsConnectedTo Object <MotorIdentifier> MotorType OptionalPlaceholder

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:AssetId String PropertyType Optional

7.6.3 ObjectType description

In case of a one to one relation between powertrains and axes, gear ratio and pitch may reflect the relation
between motor and axis velocities. This is not possible when axis coupling is involved because different ratios
for all motor-axis combinations may be needed. Additionally, there could be a nonlinear coupling between the
load side of the gear box and the axis. Thus GearRatio and Pitch only reflect the properties of the physical gear
box and it may not be possible to use these values to transform between axis and motor movements.

7.6.3.1 Variable SerialNumber

The SerialNumber property is a unique production number assigned by the manufacturer of the device. This is
often stamped on the outside of the device and may be used for traceability and warranty purposes. This
property is derived from ComponentType defined in OPC UA DI.

7.6.3.2 Variable Manufacturer

The Manufacturer property provides the name of the company that manufactured the device. This property is
derived from ComponentType defined in OPC UA DI.

7.6.3.3 Variable Model

The Model property provides the name of the product. This property is derived from ComponentType defined in
OPC UA DI.

7.6.3.4 Variable ProductCode

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC UA DI.

7.6.3.5 Variable AssetId

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The ID is provided by the vendor, integrator or user of the device. It contains typically an identifier in a branch,
use case or user specific naming scheme.

This could be for example a reference to an electric scheme. For electric schemes typically EN 81346-2 is used.

Release 1.00 43 OPC 40010-1: Vertical Integration

An use case could be to build up a location oriented view in a spare part management client software. It enables
to identify parts with the same article number which is not possible if this entry is not used. This property is
defined by ComponentType defined in OPC UA DI.

7.6.3.6 Variable GearRatio

GearRatio is the transmission ratio of the gear expressed as a fraction as input velocity (motor side) by output
velocity (load side).

RationalNumberType and RationalNumber are defined in the OPC 10001-11 (SpatialTypes).

7.6.3.7 Variable Pitch

Pitch describes the distance covered in millimeters (mm) for linear motion per one revolution of the output side
of the driving unit. Pitch is used in combination with GearRatio to describe the overall transmission from input
to output of the gear.

Calculation formula:

𝐿𝑖𝑛𝑒𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡

𝐺𝑒𝑎𝑟𝑅𝑎𝑡𝑖𝑜
× 𝑃𝑖𝑡𝑐ℎ

7.6.3.8 Reference IsConnectedTo

IsConnectedTo is a reference to provide the relationship between a motor and a gear of a power train.

7.7 SafetyStateType ObjectType Definition

7.7.1 Overview

SafetyStateType describes the safety states of the motion devices and controllers. One motion device system
is associated with one or more instances of the SafetyStateType.

The SafetyStateType was modelled directly in the MotionDeviceSystemType for the following reasons:

– The manufacturers of systems have different concepts where safety is functional located, e.g. the
hardware and software implementation.

– The safety state typically applies to the entire robotic system. If multiple safety state instances are
implemented in robotic systems, these can be represented by individual instances of the
SafetyStateType and associated with the controller by reference.

The safety state is for informational purpose only and not intended for use with functional safety applications as
defined in ISO 61508.

The SafetyStateType is formally defined in Table 28.

OPC 40010-1: Vertical Integration 44 Release 1.00

BaseDataVariableType:

OperationalMode

BaseDataVariableType:

EmergencyStop

BaseDataVariableType:

ProtectiveStop

SafetyStateType

2:ParameterSet

FolderType

EmergencyStop Functions
EmergencyStopFunctionType:

<EmergencyStopFunctionIdentifier>

FolderType

ProtectiveStop Functions
ProtectiveStopFunctionType:

<ProtectiveStopFunctionIdentifier>

2:ComponentType
PropertyType:

2:ComponentName

Figure 18 – Overview SafetyStateType

7.7.2 ObjectType definition

Table 28 – SafetyStateType Definition

Attribute Value

BrowseName SafetyStateType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasComponent Object EmergencyStopFunctions FolderType Optional

HasComponent Object ProtectiveStopFunctions FolderType Optional

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:ComponentName LocalizedText PropertyType Optional

7.7.3 ObjectType description

7.7.3.1 Variable ComponentName

The ComponentName property provides a user writeable name provided by the vendor, integrator or user of
the device. The ComponentName may be a default name given by the vendor. This property is defined by
ComponentType defined in OPC UA DI.

Release 1.00 45 OPC 40010-1: Vertical Integration

7.7.3.2 Object EmergencyStopFunctions

EmergencyStopFunctions is a container for one or more instances of the EmergencyStopFunctionType. The
number and names of emergency stop functions is vendor specific. When provided, this object contains a list of
all emergency stop functions with names and current state. See description of EmergencyStopFunctionType for
examples of emergency stop functions.

Table 29 – TypeDefinition of EmergencyStopFunctions of SafetyStateType

Attribute Value

BrowseName EmergencyStopFunctions

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <EmergencyStopFunctionIdentifier> EmergencyStopFunctionType Mandatory
Placeholder

Table 30 – ObjectType EmergencyStopFunctionType

Attribute Value

BrowseName EmergencyStopFunctionType

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC Unified Architecture

HasProperty Variable Name String PropertyType Mandatory

HasComponent Variable Active Boolean BaseDataVariableType Mandatory

Description of EmergencyStopFunctionType:

According to ISO 10218-1:2011 Ch.5.5.2 Emergency stop the robot shall have one or more emergency stop
functions.

- The Name of the EmergencyStopFunctionType provides a manufacturer-specific emergency stop
function identifier within the safety system.

The only named emergency stop function in the ISO 10218-1:2011 standard is the "Pendant emergency
stop function". Other than that, the standard does not give any indication on naming of emergency stop
functions.

– The Active variable is TRUE if this particular emergency stop function is active, e.g. that the emergency
stop button is pressed, FALSE otherwise.

7.7.3.3 Object ProtectiveStopFunctions

ProtectiveStopFunctions is a container for one or more instances of the ProtectiveStopFunctionType. The
number and names of protective stop functions is vendor specific. When provided, this object contains a list of
all protective stop functions with names and current state. See description of ProtectiveStopFunctionType for
examples of protective stop functions.

Table 31 – TypeDefinition of ProtectiveStopFunctions of SafetyStateType

Attribute Value

BrowseName ProtectiveStopFunctions

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <ProtectiveStopFunctionIdentifier> ProtectiveStopFunctionType Mandatory
Placeholder

OPC 40010-1: Vertical Integration 46 Release 1.00

Table 32 – ObjectType ProtectiveStopFunctionType

Attribute Value

BrowseName ProtectiveStopFunctionType

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC Unified Architecture

HasProperty Variable Name String PropertyType Mandatory

HasComponent Variable Enabled Boolean BaseDataVariableType Mandatory

HasComponent Variable Active Boolean BaseDataVariableType Mandatory

Description of ProtectiveStopFunctionType:

According to ISO 10218-1:2011 Ch.5.5.3 the robot shall have one or more protective stop functions designed
for the connection of external protective devices.

– The Name of the ProtectiveStopFunctionType provides a manufacturer-specific protective stop function
identifier within the safety system.

– The Enabled variable is TRUE if this protective stop function is currently supervising the system, FALSE
otherwise. A protective stop function may or may not be enabled at all times, e.g. the protective stop function
of the safety doors are typically enabled in automatic operational mode and disabled in manual mode. On
the other hand for example, the protective stop function of the teach pendant enabling device is enabled in
manual modes and disabled in automatic modes.

– The Active variable is TRUE if this particular protective stop function is active, i.e. that a stop is initiated,
FALSE otherwise. If Enabled is FALSE then Active shall be FALSE.

Examples

The table below shows an example with a door interlock function. In this example, the door is only monitored
during automatic modes. During manual modes, the operators may open the door without causing a protective
stop.

Table 33 – Door Interlock Protective Stop Example

Automatic Mode Manual Mode

Door interlock Enabled Active Enabled Active

Door closed TRUE FALSE FALSE FALSE

Door open TRUE TRUE FALSE FALSE

The next example shows how the three-position enabling device normally found on teach pendants is
processed. In this case it does not matter if the enabling device is pressed or not during automatic modes, while
in manual modes, a protective stop is active as long as the enabling device is released or fully pressed.

Table 34 – Teach Pendant Enabling Device Protective Stop Example

Automatic Mode Manual Mode

Teach Pendant Enabling Device Enabled Active Enabled Active

Released FALSE FALSE TRUE TRUE

Middle position FALSE FALSE TRUE FALSE

Fully pressed (panic) FALSE FALSE TRUE TRUE

Release 1.00 47 OPC 40010-1: Vertical Integration

7.7.3.4 Object ParameterSet

Table 35 – ParameterSet of SafetyStateType

Attribute Value

BrowseName ParameterSet

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Variable OperationalMode Operational
ModeEnume
ration

BaseDataVariableType Mandatory

HasComponent Variable EmergencyStop Boolean BaseDataVariableType Mandatory

HasComponent Variable ProtectiveStop Boolean BaseDataVariableType Mandatory

Description of ParameterSet of SafetyStateType:

– Variable OperationalMode: The OperationalMode variable provides information about the current
operational mode. Allowed values are described in OperationalModeEnumeration, see ISO 10218-1:2011
Ch.5.7 Operational Modes.

– Variable EmergencyStop: The EmergencyStop variable is TRUE if one or more of the emergency stop
functions in the robot system are active, FALSE otherwise. If the EmergencyStopFunctions object is
provided, then the value of this variable is TRUE if one or more of the listed emergency stop functions are
active.

– Variable ProtectiveStop: The ProtectiveStop variable is TRUE if one or more of the enabled protective stop
functions in the system are active, FALSE otherwise. If the ProtectiveStopFunctions object is provided, then
the value of this variable is TRUE if one or more of the listed protective stop functions are enabled and
active.

Table 36 – OperationalModeEnumeration

OperationalModeEnumeration

EnumString Value Description

OTHER 0 This value is used when there is no valid operational mode. Examples are:
- During system-boot
- The system is not calibrated (and hence can not verify cartesian position
values)
- There is a failure in the safety system itself

MANUAL_REDUCED_SPEED 1 "Manual reduced speed" - name according to ISO 10218-1:2011

MANUAL_HIGH_SPEED 2 "Manual high speed" - name according to ISO 10218-1:2011

AUTOMATIC 3 "Automatic" - name according to ISO 10218-1:2011

AUTOMATIC_EXTERNAL 4 "Automatic external" - Same as "Automatic" but with external control, e.g.
by a PLC

7.8 ControllerType ObjectType Definition

7.8.1 Overview

The ControllerType describes the control unit of motion devices. One motion device system can have one or
more instances of the ControllerType. The ControllerType is formally defined in Table 37.

OPC 40010-1: Vertical Integration 48 Release 1.00

2:ParameterSet

2:ComponentType

ControllerType

PropertyType:

2:SerialNumber

PropertyType:

2:Manufacturer

PropertyType:

2:Model

PropertyType:

2:ProductCode

PropertyType:

2:AssetId

PropertyType:

2:DeviceManual

PropertyType:

2:ComponentName

FolderType

Components
2:ComponentType:

<ComponentIdentifier>

FolderType:

TaskControls
TaskControlType:

<TaskControlIdentifier>

2:SoftwareType:

<SoftwareIdentifier>
FolderType:

Software

UserType:

CurrentUser

BaseDataVariableType:

TotalPowerOnTime

BaseDataVariableType:

UpsState

AnalogUnitType:

InputVoltage

AnalogUnitType:

Temperature

AnalogUnitType:

TotalEnergyConsumption

AnalogUnitType:

CabinetFanSpeed

AnalogUnitType:

CPUFanSpeed

BaseDataVariableType:

StartUpTime

Figure 19 – Overview ControllerType

Release 1.00 49 OPC 40010-1: Vertical Integration

7.8.2 ObjectType definition

Table 37 – ControllerType Definition

Attribute Value

BrowseName ControllerType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasProperty Variable 2:SerialNumber String PropertyType Mandatory

HasProperty Variable 2:Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable 2:Model LocalizedText PropertyType Mandatory

HasProperty Variable 2:ProductCode String PropertyType Mandatory

HasComponent Object CurrentUser UserType Mandatory

HasComponent Object Components FolderType Optional

HasComponent Object Software FolderType Mandatory

HasComponent Object TaskControls FolderType Mandatory

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

HasSafetyStates Object <SafetyStatesIdentifier> SafetyStateType OptionalPlaceholder

Controls Object <MotionDeviceIdentifier> MotionDeviceType OptionalPlaceholder

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:AssetId String PropertyType Optional

HasProperty Variable 2:DeviceManual String PropertyType Optional

HasProperty Variable 2:ComponentName LocalizedText PropertyType Optional

7.8.3 ObjectType description

7.8.3.1 Variable SerialNumber

The SerialNumber property is a unique production number assigned by the manufacturer of the device. This is
often stamped on the outside of the device and may be used for traceability and warranty purposes. This
property is derived from ComponentType defined in OPC UA DI.

7.8.3.2 Variable Manufacturer

The Manufacturer property provides the name of the company that manufactured the device. This property is
derived from ComponentType defined in OPC UA DI.

7.8.3.3 Variable Model

The Model property provides the name of the product. This property is derived from ComponentType defined in
OPC UA DI.

7.8.3.4 Variable ProductCode

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC UA DI.

7.8.3.5 Variable AssetId

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The ID is provided by the vendor, integrator or user of the device. It contains typically an identifier in a branch,
use case or user specific naming scheme.

This could be for example a reference to an electric scheme. For electric schemes typically EN 81346-2 is used.

An use case could be to build up a location oriented view in a spare part management client software. It enables
to identify parts with the same article number which is not possible if this entry is not used.

This property is defined by ComponentType defined in OPC UA DI.

OPC 40010-1: Vertical Integration 50 Release 1.00

7.8.3.6 Variable DeviceManual

The DeviceManual property allows specifying an address of the user manual for the controller. It may be a
pathname in the file system or a URL (Web address). This property is defined by ComponentType defined in
OPC UA DI.

7.8.3.7 Variable ComponentName

The ComponentName property provides a user writeable name provided by the vendor, integrator or user of
the device. The ComponentName may be a default name given by the vendor. This property is defined by
ComponentType defined in OPC UA DI.

7.8.3.8 Object CurrentUser

The CurrentUser obje provides information about the active vendor specific user level of the controller.

7.8.3.9 Object Components

Components is a container for one or more instances of subtypes of ComponentType defined in OPC UA DI.
The listed components are installed in the motion device system, e.g. a processing-unit, a power-supply, an IO-
board or a drive, and have an electrical interface to the controller.

Table 38 – TypeDefinition of Components of ControllerType

Attribute Value

BrowseName Components

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <ComponentIdentifier> 2:ComponentType MandatoryPlaceholder

The AuxiliaryComponentType and DriveType are the only subtypes of ComponentType for use in this container
which are described in this specification. The intention is to integrate inside this container devices which are
defined in other companion specifications using DI.

7.8.3.10 Object Software

Software is a container for one or more instances of SoftwareType defined in OPC UA DI.

Each controller has at least one software installed.

Table 39 – TypeDefinition of Software of ControllerType

Attribute Value

BrowseName Software

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <SoftwareIdentifier> 2:SoftwareType MandatoryPlaceholder

7.8.3.11 Object TaskControls

TaskControls is a container for one or more instances of TaskControlType.

Release 1.00 51 OPC 40010-1: Vertical Integration

Table 40 – TypeDefinition of TaskControls of ControllerTyp

Attribute Value

BrowseName TaskControls

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Object <TaskControlIdentifier> TaskControlType MandatoryPlaceholder

7.8.3.12 Object ParameterSet

Table 41 – ParameterSet of ControllerType

Attribute Value

BrowseName ControllerType

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Variable TotalPowerOnTime DurationString BaseDataVariableType Optional

HasComponent Variable StartUpTime DateTime BaseDataVariableType Optional

HasComponent Variable UpsState String BaseDataVariableType Optional

HasComponent Variable TotalEnergyConsumption Double AnalogUnitType Optional

HasComponent Variable CabinetFanSpeed Double AnalogUnitType Optional

HasComponent Variable CPUFanSpeed Double AnalogUnitType Optional

HasComponent Variable InputVoltage Double AnalogUnitType Optional

HasComponent Variable Temperature Double AnalogUnitType Optional

Description of ParameterSet of ControllerType:

– Variable :The TotalPowerOnTime variable provides the total accumulated time the controller was powered
on.

– Variable StartUpTime: The StartUpTime variable provides the date and time of the last start-up of the
controller.

– Variable UpsState: The UpsState variable provides the vendor specific status of an integrated
uninterruptible power supply or accumulator system.

– Variable TotalEnergyConsumption: The TotalEnergyConsumption variable provides total accumulated
energy consumed by the motion devices related with this controller instance.

– Variable CabinetFanSpeed: The CabinetFanSpeed variable provides the speed of the cabinet fan.

– Variable CPUFanSpeed: The CPUFanSpeed variable provides the speed of the CPU fan.

– Variable InputVoltage: The InputVoltage variable provides the input voltage of the controller which can be
a configured value. To distinguish between an AC or DC supply the optional property Definition of the base
type DataItemType shall be used.

– Variable Temperature: The Temperature variable provides the controller temperature given by a
temperature sensor inside of the controller.

7.8.3.13 Reference HasSafetyStates

The HasSafetyStates reference provides the relationship of safety states to a controller. The InverseName is
SafetyStatesOf.

7.8.3.14 Reference Controls

The Controls reference provides the relationship of a motion device and controller. The InverseName is
IsControlledBy.

OPC 40010-1: Vertical Integration 52 Release 1.00

7.9 AuxiliaryComponentType ObjectType Definition

7.9.1 Overview

The AuxiliaryComponentType describes components mounted in a controller cabinet or a motion device e.g. an
IO-board or a power supply.

It is formally defined in Table 42.

This type should not be used for instances of components which represent a motor, a gear or a drive For these
components this specification describes specific types.

PropertyType:

2:ProductCode

AuxiliaryComponentType

2:DeviceType
PropertyType:

2:AssetId

Figure 20 – Overview AuxiliaryComponentType

7.9.2 ObjectType definition

Table 42 – AuxiliaryComponentType Definition

Attribute Value

BrowseName AuxiliaryComponentType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the DeviceType defined in OPC Unified Architecture for Devices (DI)

HasProperty Variable 2:ProductCode String PropertyType Mandatory

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:AssetId String PropertyType Optional

7.9.3 ObjectType description

7.9.3.1 Variable ProductCode

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC UA DI.

7.9.3.2 Variable AssetId

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The ID is provided by the vendor, integrator or user of the device. It contains typically an identifier in a branch,
use case or user specific naming scheme.

This could be for example a reference to an electric scheme. For electric schemes typically EN 81346-2 is used.

Release 1.00 53 OPC 40010-1: Vertical Integration

An use case could be to build up a location oriented view in a spare part management client software. It enables
to identify parts with the same article number which is not possible if this entry is not used.

This property is defined by ComponentType defined in OPC UA DI.

7.10 DriveType

7.10.1 Overview

The DriveType describes drives (multi-slot or single-slot axis amplifier) mounted in a controller cabinet or a
motion device. When used inside a motion device it should be part of a power train. It is formally defined in
Table 42.

Annex B.1.9 shows different possibilities of usage.

PropertyType:

2:ProductCode

DriveType

2:DeviceType
PropertyType:

2:AssetId

Figure 21 – Overview DriveType

7.10.2 ObjectType definition

Table 43 – DriveType Definition

Attribute Value

BrowseName DriveType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the DeviceType defined in OPC Unified Architecture for Devices (DI)

HasProperty Variable 2:ProductCode String PropertyType Mandatory

The following instance declarations are not defined by this type, but by the supertype ComponentType

and repeated here for better readability

HasProperty Variable 2:AssetId String PropertyType Optional

7.10.3 ObjectType description

7.10.3.1 Variable ProductCode

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC UA DI.

OPC 40010-1: Vertical Integration 54 Release 1.00

7.10.3.2 Variable AssetId

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The ID is provided by the vendor, integrator or user of the device. It contains typically an identifier in a branch,
use case or user specific naming scheme.

This could be for example a reference to an electric scheme. For electric schemes typically EN 81346-2 is used.

An use case could be to build up a location oriented view in a spare part management client software. It enables
to identify parts with the same article number which is not possible if this entry is not used.

This property is defined by ComponentType defined in OPC UA DI.

7.11 TaskControlType ObjectType Definition

7.11.1 Overview

The TaskControlType represents instances of task controls of a controller and is formally defined in Table 44.

The task control describes an execution engine that loads and runs task programs. One task runs one task
program at the time. The system should instantiate the maximum allowed number of task controls.

BaseDataVariableType:

TaskProgramLoaded

BaseDataVariableType:

TaskProgramName

ExecutionModeEnumeration:

ExecutionMode

BaseObjectType:

2:ParameterSet

PropertyType:

2:ComponentName

TaskControlType

2:ComponentType

Figure 22 – Overview TaskControlType

Release 1.00 55 OPC 40010-1: Vertical Integration

7.11.2 ObjectType definition

Table 44 – TaskControlType Definition

Attribute Value

BrowseName TaskControlType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

HasProperty Variable 2:ComponentName LocalizedText PropertyType Mandatory

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

Controls Object <MotionDeviceIdentifier> MotionDeviceType OptionalPlaceholder

7.11.3 ObjectType description

7.11.3.1 Variable ComponentName

The ComponentName property provides a user writeable name provided by the vendor, integrator or user of
the device.

The ComponentName of the TaskControlType provides a customer given identifier for the task control or a
default name given by the vendor. This property is derived from ComponentType defined in OPC UA DI.

7.11.3.2 Object ParameterSet

Table 45 – ParameterSet of TaskControlType

Attribute Value

BrowseName ParameterSet

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasComponent Variable TaskProgramName String BaseDataVariableType Mandatory

HasComponent Variable TaskProgramLoaded Boolean BaseDataVariableType Mandatory

HasComponent Variable ExecutionMode Enumeration ExecutionModeEnumeration Optional

Description of ParameterSet of TaskControlType:

– Variable TaskProgramName: The TaskProgramName variable provides a customer given identifier for the
task program.

– Variable TaskProgramLoaded: The TaskProgramLoaded variable is TRUE if a task program is loaded in
the task control, FALSE otherwise.

– Variable ExecutionMode: The ExecutionMode variable tells how the task control executes the task program.

Table 46 – ExecutionModeEnumeration

ExecutionModeEnumeration

EnumString Value Description

CYCLE 0 Single execution of a task program according to ISO 8373

CONTINUOUS 1 Task program is executed continuously and starts again automatically

STEP 2 Task program is executed in steps

7.11.3.3 Reference Controls

Controls is a reference to provide the relationship between a task control and a motion device. The InverseName
is IsControlledBy.

OPC 40010-1: Vertical Integration 56 Release 1.00

7.12 LoadType ObjectType Definition

7.12.1 Overview

The LoadType is for describing loads mounted on the motion device typically by an integrator or a customer
and is formally defined in Table 47. Instances of this ObjectType definition are used to describe the load
mounted on one of several mounting points. A very common mounting point is the flange of a motion device.
Typically a motion device has additional mounting points on some of the axis. The provided values can either
be determined by the robot controller or can be set up by an operator.

AnalogUnitType:

Mass

FrameType:

CenterOfMass

BaseObjectType

LoadType

VectorType:

Inertia

Figure 23 – Overview LoadType

7.12.2 ObjectType definition

Table 47 – LoadType Definition

Attribute Value

BrowseName LoadType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC Unified Architecture

HasComponent Variable Mass Double AnalogUnitType Mandatory

HasComponent Variable CenterOfMass 3DFrame 3DFrameType Optional

HasComponent Variable Inertia 3DVector 3DVectorType Optional

7.12.3 ObjectType description

7.12.3.1 Variable Mass

The variable Mass provides the weight of the load mounted on one mounting point.

The EngineeringUnits of the Mass shall be provided.

Release 1.00 57 OPC 40010-1: Vertical Integration

7.12.3.2 Variable CenterOfMass

The variable CenterOfMass provides the position and orientation of the center of the mass related to the
mounting point using a 3DFrameType. X, Y, Z define the position of the center of gravity relative to the mounting
point coordinate system. A, B, C define the orientation of the principal axes of inertia relative to the mounting
point coordinate system. Orientation A, B, C can be "0" for systems which do not need these values.

3DFrameType and 3DFrame are defined in OPC 10001-11 (SpatialTypes).

If the instance of the LoadType describes the flange load of a motion device the mounting point coordinate
system is the flange coordinate system. If the instance of the LoadType describes an additional load of an axis
the mounting point coordinate system is vendor specific and it is up to the vendor to model this coordinate
system.

7.12.3.3 Variable Inertia

The variable Inertia uses the 3DVektorType to describe the three values of the principal moments of inertia with
respect to the mounting point coordinate system. If inertia values are provided for rotary axis the CenterOfMass
shall be completely filled as well. Table 48 describes the possible degrees of modelling from a minimal one e.g.
only the weight of the mass to a complete one comprising weight, center of mass, principal axes and inertia.

3DVectorType and 3DVector are defined in OPC 10001-11 (SpatialTypes).

Table 48 – LoadType possible degrees of modelling

 Mass
CenterOfMass Inertia

X, Y, Z A, B, C

Mass only Used - - -

Mass with center of gravity Used Used 0, 0, 0 -

Mass with inertia Used Used Used Used

7.13 UserType ObjectType Definition

7.13.1 Overview

The UserType ObjectType describes information of the registered user groups within the control system.

 It is formally defined in Table 49.

OPC 40010-1: Vertical Integration 58 Release 1.00

PropertyType

Level

PropertyType

Name

BaseObjectType

UserType

Figure 24 – Overview UserType

7.13.2 ObjectType definition

Table 49 – UserType Definition

Attribute Value

BrowseName UserType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC Unified Architecture

HasProperty Variable Level String PropertyType Mandatory

HasProperty Variable Name String PropertyType Optional

7.13.3 ObjectType description

7.13.3.1 Variable Level

The Level property provides information about the access rights and determines what can be viewed, updated
or deleted by a user. Depending on the user level different functionalities are available. The robot vendors might
use different descriptions and access levels for the users and might require authentification.

7.13.3.2 Variable Name

The Name property provides the name for the current user within the control system.

8 OPC UA ReferenceTypes

8.1 General

This section defines the ReferenceTypes that are inherent to the present companion specification. Figure 25
describes informally the hierarchy of these Reference Types. OPC UA Reference Types are defined in OPC
10000-3.

Release 1.00 59 OPC 40010-1: Vertical Integration

References

HierarchicalReferences

Controls

HasSafetyStatesMoves

IsDrivenBy

IsConnectedTo

Requires HasSlaves

NonHierarchicalReferences

Figure 25 – Reference Type Hierarchy

8.2 Controls (IsControlledBy) Reference Type

The OPC UA ReferenceType Controls is used to describe dependencies between objects which have a
controlling character. The BrowseName Controls and the InverseName IsControlledBy describe semantically
the hierarchical dependency e.g. a controlling device Controls a controlled machine module.

Example for usage in this companion specification: If one controller Controls several motion devices, each
motion device IsControlledBy the same controller.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 50 – Controls Reference Definition

Attributes Value

BrowseName Controls

InverseName IsControlledBy

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.3 Moves (IsMovedBy) Reference Type

The OPC UA ReferenceType Moves is used to describe the coupling between a power train and the axes from
the power train point of view. A power train has a Moves reference to all axis that are moving when only this
powertrain moves.

For examples see Annex B.1.8.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

OPC 40010-1: Vertical Integration 60 Release 1.00

Table 51 – Controls Reference Definition

Attributes Value

BrowseName Moves

InverseName IsMovedBy

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.4 Requires (IsRequiredBy) Reference Type

The OPC UA ReferenceType Requires is used to describe the coupling between a power train and axes from
the axis point of view. An axis has a Requires reference to all powertrains that need to move such that only this
single axis moves.

For examples see Annex B.1.8.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 52 – Controls Reference Definition

Attributes Value

BrowseName Requires

InverseName IsRequiredBy

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.5 IsDrivenBy (Drives) Reference Type

The OPC UA ReferenceType IsDrivenBy is used to describe dependencies between objects which have a
driving or powering character. The BrowseName IsDrivenBy and the InverseName Drives describe semantically
the hierarchical dependency.

Example for usage in this companion specification: an electrical motor IsDrivenBy an servo amplifier (drive) and
an internal drive of a motion device or a drive as a component of a controller Drives a motor.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 53 – Drives Reference Definition

Attributes Value

BrowseName IsDrivenBy

InverseName Drives

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Release 1.00 61 OPC 40010-1: Vertical Integration

8.6 IsConnectedTo Reference Type

The OPC UA ReferenceType IsConnectedTo is used to describe dependencies between objects which are
mounted or mechanically linked or connected to each other. The IsConnectedTo reference is symmetric and
has no InverseName.

Example for usage in this companion specification: a motor IsConnectedTo to a gear and vice versa.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 54 – IsConnectedTo Reference Definition

Attributes Value

BrowseName IsConnectedTo

InverseName

Symmetric True

IsAbstract False

Subtype of the NonHierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.7 HasSafetyStates (SafetyStatesOf) Reference Type

The OPC UA ReferenceType HasSafetyStates is used to describe dependencies between objects to show
which (controller) object is responsible for the execution of the safety-functionality. The BrowseName
HasSafetyStates and the InverseName SafetyStatesOf describe semantically the hierarchical dependency.

Example for usage in this companion specification: a controller HasSafetyStates and the reference shows to an
instance of SafetyStatesType. It is possible that there are two controller in one motion device system.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 55 – HasSafetyStates Reference Definition

Attributes Value

BrowseName HasSafetyStates

InverseName SafetyStatesOf

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.8 HasSlave (IsSlaveOf) Reference Type

The OPC UA ReferenceType HasSlave is a reference to provide the master-slave relationship of power trains
which provide torque for a common axis. The InverseName is IsSlaveOf.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 56 – HasSlave Reference Definition

Attributes Value

BrowseName HasSlave

InverseName IsSlaveOf

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

OPC 40010-1: Vertical Integration 62 Release 1.00

9 Profiles and Namespaces

9.1 Namespace Metadata

http://opcfoundation.org/UA/Robotics/ defines the namespace metadata for this specification. The Object is
used to provide version information for the namespace and an indication about static Nodes. Static Nodes are
identical for all Attributes in all Servers, including the Value Attribute. See Part 5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a component of the
Namespaces Object that is part of the Server Object. The NamespaceMetadataType ObjectType and its
Properties are defined in Part 5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file. The
UANodeSet XML schema is defined in Part 6.

Table 57 – NamespaceMetadata Object for this Specification

Attribute Value

BrowseName http://opcfoundation.org/UA/Robotics/

References BrowseName DataType Value

HasProperty NamespaceUri String http://opcfoundation.org/UA/Robotics/

HasProperty NamespaceVersion String 1.00

HasProperty NamespacePublicationDate DateTime 2019-02-04

HasProperty IsNamespaceSubset Boolean Vendor-specific

HasProperty StaticNodeIdTypes IdType[] Numeric

HasProperty StaticNumericNodeIdRange NumericRange[]

HasProperty StaticStringNodeIdPattern String

9.2 Conformance Units and Profiles

This chapter defines the corresponding Profiles and Conformance Units for the OPC UA Information Model for
Robotics. Profiles are named groupings of Conformance Units. Facets are Profiles that will be combined with
other Profiles to define the complete functionality of an OPC UA Server or Client.

9.3 Server Profiles

The following tables specify the Profiles available for Robotic-Systems that implement the OPC UA for Robotics
Information Model companion specification.

9.3.1 Robotics Base Profile

This Profile supports the information for Robotics. This Profile is intended to be used of OPC UA servers with
limited resources. It is built upon the "Embedded 2017 UA Server Profile" Profile. The content of the Profile is
defined in Table 72.

Release 1.00 63 OPC 40010-1: Vertical Integration

Table 58 – Robotics Base Profile

Conformance Unit Description Optional/

Mandatory

Robotics Part 1 ObjectTypes
Mandatory

Supports all mandatory parts of the ObjectTypes that are defined in
VDMA OPC Robotics Part 1.

M

Profiles

Embedded 2017 UA Server Profile

http://opcfoundation.org/UA-Profile/Server/EmbeddedUA2017

BaseDevice_Server_Facet (defined in OPC 10000-100)

"Data Access Server Facet" Profile

http://opcfoundation.org/UA-Profile/Server/DataAccess

"ComplexType 2017 Server Facet" Profile

http://opcfoundation.org/UA-Profile/Server/ComplexTypes2017

9.4 Client Facets

This specification does not define any Client Facets.

9.5 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The
Attributes NodeId and BrowseName are identifiers. A Node in the UA AddressSpace is unambiguously identified
using a NodeId. Unlike NodeIds, the BrowseName cannot be used to unambiguously identify a Node. Different
Nodes may have the same BrowseName. They are used to build a browse path between two Nodes or to define
a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName. However, if they
want to provide a standard Property, its BrowseName shall have the namespace of the standards body although
the namespace of the NodeId reflects something else, for example the EngineeringUnits Property. All NodeIds
of Nodes not defined in this specification shall not use the standard namespaces.

Table 59 provides a list of mandatory and optional namespaces used in an Robotics OPC UA Server.

Table 59 – Namespaces used in a Robotics Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the OPC UA

specification. This namespace shall have namespace index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This may include

types and instances used in an Robotics Device represented by the

server. This namespace shall have namespace index 1.

Mandatory

http://opcfoundation.org/UA/DI/ Namespace for NodeIds and BrowseNames defined in OPC 10000-

100. The namespace index is server specific.

Mandatory

http://opcfoundation.org/UA/Robotics/ Namespace for NodeIds and BrowseNames defined in this

specification. The namespace index is server specific.

Mandatory

Vendor specific types and instances A server may provide vendor-specific types like types derived from

ObjectTypes defined in this specification or vendor-specific instances

of those types in a vendor-specific namespace.

Optional

http://opcfoundation.org/UA-Profile/Server/EmbeddedUA2017
http://opcfoundation.org/UA-Profile/Server/DataAccess
http://opcfoundation.org/UA-Profile/Server/ComplexTypes2017

OPC 40010-1: Vertical Integration 64 Release 1.00

Table 60 provides a list of namespaces and their index used for BrowseNames in this specification. The default
namespace of this specification is not listed since all BrowseNames without prefix use this default namespace.

Table 60 – Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

http://opcfoundation.org/UA/DI/ 2 2:Manufacturer

Release 1.00 65 OPC 40010-1: Vertical Integration

Annex A
(normative)

Robotics Namespace and mappings

A.1 Namespace and identifiers for Robotics Information Model

This appendix defines the numeric identifiers for all of the numeric NodeIds defined in this specification. The
identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance Node
that appears in the specification and the Identifier is the numeric value for the NodeId.

The BrowsePath for an Instance Node is constructed by appending the BrowseName of the instance Node to
the BrowseName for the containing instance or type. An underscore character is used to separate each
BrowseName in the path. Let’s take for example, the <type> ObjectType Node which has the <propery>
Property. The Name for the <property> InstanceDeclaration within the <type> declaration is:
AutoIdDeviceType_DeviceLocation.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/Robotics/

The CSV released with this version of the specification can be found here:

– http://www.opcfoundation.org/UA/schemas/Robotics/1.0/NodeIds.csv

NOTE The latest CSV that is compatible with this version of the specification can be found here:

– http://www.opcfoundation.org/UA/schemas/Robotics/NodeIds.csv

A computer processible version of the complete Information Model defined in this specification is also provided.
It follows the XML Information Model schema syntax defined in Part 6.

The Information Model Schema released with this version of the specification can be found here:

– http://www.opcfoundation.org/UA/schemas/Robotics/1.0/Opc.Ua.Robotics.NodeSet2.xml

A.2 Profile URIs for Robotics Information Model

Table A.1 defines the Profile URIs for the Robotics Information Model companion specification.

Table A.1 – Profile URIs

Profile Profile URI

First facet http://opcfoundation.org/UA-Profile/External/Robotics/RoboticsBaseProfile

…

http://opcfoundation.org/UA/Robotics/
http://www.opcfoundation.org/UA/schemas/Robotics/1.0/NodeIds.csv
http://www.opcfoundation.org/UA/schemas/Robotics/NodeIds.csv
http://www.opcfoundation.org/UA/schemas/Robotics/1.0/Opc.Ua.Robotics.NodeSet2.xml

OPC 40010-1: Vertical Integration 66 Release 1.00

Annex B
(informative)

Examples

B.1 Examples of motion device systems, motion devices, axes and power trains

This chapter describes examples for motion device systems, motion devices, axes and power trains.

In addition, this chapter contains examples of how to use the references contained in this specification.

B.1.1 Example for motion device systems

Typically a motion device system consists of at least one manipulator and one control unit. Manipulators shown
in Figure B.1, Figure B.2, Figure B.3, Figure B.4, Figure B.5, Figure B.6 and Figure B.7 normally have only one
control unit.

Figure B.8 shows an example with four motion devices which can be controlled by one control unit.

The motion device system illustrated in Figure B.9 consists of three motion devices and may have one or more
control units regarding the motion devices. When a safety PLC is integrated in this motion device system, it can
be described as an own instance of a ControllerType. This Instance would have no Reference to an instance of
a motion device, because the safety PLC doesn´t control a manipulator. It could however have a Reference to
the instantiated SafetyStates.

B.1.2 Examples for motion devices and controllers in a motion device system

The motion devices shown in Figure B.8 are typically controlled by one controller unit. Each motion device
IsControlledBy the same controller.

The system illustrated in Figure B.9 may have two control units. For example one controller Controls the both
articulated robots and the mobile platform IsControlledBy the other controller.

B.1.3 Examples for motion devices

A motion device can be any manipulator e.g. a robot, a linear unit or a turn table. For each motion device which
has an own type plate an instance of a MotionDeviceType shall be created.

The kind of motion device shall be described with the Property MotionDeviceCategory of the ParameterSet of
the MotionDeviceType by the MotionDeviceCategoryEnumeration, which is based on definitions of ISO
8373:2012.

The Figures Figure B.1 and Figure B.2 show examples of cartesian manipulators.

Figure B.2 shows a portal manipulator, a variant of a cartesian manipulator. Axis 1 in this example is driven with
master-slave and a robot-hand is mounted at the flange of the cartesian manipulator.

Release 1.00 67 OPC 40010-1: Vertical Integration

Figure B.1 – Cartesian manipulator

Figure B.2 – Portal manipulator

Courtesy of KUKA, used with permission.

Courtesy of KraussMaffei, used with permission.

OPC 40010-1: Vertical Integration 68 Release 1.00

Figure B.3 shows an example of a parallel manipulator. So called delta robots, as shown in Figure B.4, are also
parallel manipulators.

Figure B.3 – Stewart platform or Hexapod

Figure B.4 shows an abstract example of a delta robot.

Figure B.4 – Delta robot

Courtesy of ABB, used with permission.

Courtesy of Beckhoff,
used with permission.

Release 1.00 69 OPC 40010-1: Vertical Integration

Figure B.5 shows an abstract example of a scara robot.

Figure B.5 – Scara robot

A typical example of an articulated robot is shown in Figure B.6.

Figure B.6 – Articulated robot

Courtesy of ABB, used with permission.

Courtesy of Mitsubishi Electric,
used with permission.

OPC 40010-1: Vertical Integration 70 Release 1.00

Another example of an articulated robot is a so called humanoid robot as Figure B.7 schematically shows.

Figure B.7 – Schematic of a humanoid robot

B.1.4 Examples of combinations of motion devices in a motion device system

Figure B.8 shows four motion devices integrated in one motion device system: an articulated robot on a linear
unit with two turntables.

Figure B.8 – Motion device system 1

Courtesy of ABB, used with permission.

Courtesy of KUKA, used with permission.

Release 1.00 71 OPC 40010-1: Vertical Integration

Figure B.9 shows three motion devices in one motion device system: two articulated robots on a mobile platform.

Figure B.9 – Motion device system 2

B.1.5 Axes and power trains

An axis of a motion device is the mechanical joint of a manipulator that performs a linear or a rotational
movement.

Power trains, consisting of gears, motors and drives, are responsible for the movement of axes. Drives can be
integrated in the manipulator or inside a controller cabinet. References describe the relationships between the
components of the power train.

Figure B.10 shows two possibilities for a realization of a linear two-dimensional motion device. While in the left
figure there is a 1:1 relation between power train and mechanical axis in the right figure power train 1 and power
train 2 have effect on the movement of axis 1 and on axis 2. An additional load is located on the mechanical
axis 2 but has effect on both power trains.

References describe the relationships between the movement of axes and the power trains that initiate the
movement.

Courtesy of KUKA, used with permission.

OPC 40010-1: Vertical Integration 72 Release 1.00

Figure B.10 – Axis and power train coupling

B.1.6 Virtual Axes

If there is the need to show information about virtual axes, which are not actively run by a power train, then
these axes shall be provided, but they don´t have References to a power train. An example for a virtual axis is,
when a robot control calculates the movement of an external axis in accordance to the robot movement, e.g. for
a servo welding gun mounted at the robot flange, but doesn´t control actively the movement of this axis with an
internal power train.

Another example for a virtual axis can be found in a delta robot. When the fourth axis is driven through a
telescope shaft and cardan joints, then the length of the telescope shaft is depending on the positions of axes
1, 2 and 3. This length can be seen as a virtual axis, as it has constraints similar to a real axis, e.g. position
limits. But it is not possible to actively move this axis.

B.1.7 Examples for axes and power trains

Figure B.1 and Figure B.2 show different versions of Cartesian robots. Figure B.1 shows a three axis robot
which has one dedicated power train for each axis: A power train Moves exactly one axis and so an axis only
Requires one dedicated power train. One motor of a power train IsDrivenBy a drive and IsConnectedTo a gear.

Figure B.2 shows a three axis robot with a master-slave driven axis 1. The first and second power train Moves
axis 1. The first power train HasSlave the second power train. Axis 1 Requires the first and the second power
train. For axis 2 and 3 one power train Moves exactly one axis and so an axis only Requires one dedicated
power train.

B.1.8 Examples for the use of references regarding axes and power trains

B.1.8.1 Example articulated six-axis industrial robot

The typical six-axis industrial robot shown in Figure B.6 normally has 6 power trains for the movement of the 6
axes. Due to the robot hand design, various power trains initiate internal compensation movements. When only
the motor of power train 4 is rotating then axis 4, axis 5 and 6 are moving. When only axis 4 should be moved
and axis 5 and 6 should stand still then power trains 5 and 6 must compensate the movement of these axes.
Thus a movement of only axis 4 requires rotation of the motors of the power trains 4, 5 and 6. The complete set
of references is depiced in Figure B.11.

Release 1.00 73 OPC 40010-1: Vertical Integration

Figure B.11 – Coupling references for a typical six-axis industrial robot

A power train Moves an axis means that if the motor of only this power train moves then there will be an effect
on the position of the axis.

i. Power train 1 Moves axis 1

ii. Power train 2 Moves axis 2

iii. Power train 3 Moves axis 3

iv. Power train 4 Moves axis 4, axis 5 and axis 6

v. Power train 5 Moves axis 5 and axis 6

vi. Power train 6 Moves axis 6

Description regarding iv.: When only the motor of power train 4 is moving there is an effect on the
position of axis 4, axis 5 and axis 6.

An axis IsMovedBy a power trains means, that actions of these power trains have an influence on the axis
position. It is the inverse of the Moves reference.

i. Axis 1 IsMovedBy power train 1

ii. Axis 2 IsMovedBy power train 2

iii. Axis 3 IsMovedBy power train 3

iv. Axis 4 IsMovedBy power train 4

v. Axis 5 IsMovedBy power train 5 and power train 4

vi. Axis 6 IsMovedBy power train 6, power train 5 and power train 4

Description regarding vi.: Axis 6 movement is depending on movement from power train 6, power train
5 and power train 4.

An axis Requires the movement of a motor of a power train to position but also other power trains might be
involved by this movement to compensation movements of affected axes.

i. Axis 1 Requires power train 1

ii. Axis 2 Requires power train 2

iii. Axis 3 Requires power train 3

iv. Axis 4 Requires power train 4, power train 5 and power train 6

v. Axis 5 Requires power train 5 and power train 6

vi. Axis 6 Requires power train 6

OPC 40010-1: Vertical Integration 74 Release 1.00

Description regarding iv.: When only axis 4 should be moved compensation movements of power train
5 and power train 6 are necessary to ensure a standstill of axis 5 and axis 6.

A power train IsRequiredBy axes means that this power train is active when only the referenced axis should
be moved and all other axis should stand still. It is the inverse of the Requires reference.

i. Power train 1 IsRequiredBy axis 1

ii. Power train 2 IsRequiredBy axis 2

iii. Power train 3 IsRequiredBy axis 3

iv. Power train 4 IsRequiredBy axis 4

v. Power train 5 IsRequiredBy axis 4 and axis 5

vi. Power train 6 IsRequiredBy axis 4, axis 5 and axis 6

Description regarding vi: Power train 6 is involved in positioning of axis 4, axis 5 and axis 6.

B.1.8.2 Example articulated six-axis industrial robot with 3 master-slave axes

A high-payload six-axis industrial robot shown in Figure B.6 can have nine power trains for the movement of the
six axes. In this example the axes 1 to 3 are each driven by two power trains with master-slave configuration.

Figure B.12 shows the use of the HasSlave rerference in addition to the power train to axis references.

Figure B.12 – Coupling references for a six-axis industrial robot with master-slave axes

A power train HasSlave a power train means that one power train is the master of a master-slave-configuration
and he references HasSlave to power train which is slave coupled.

HasSlave References:

i. Power train 1 HasSlave power train 2

ii. Power train 3 HasSlave power train 4

iii. Power train 5 HasSlave power train 6

Release 1.00 75 OPC 40010-1: Vertical Integration

For this master-slave configuration the Moves and Requires references :

i. Power train 1 Moves axis 1

ii. Power train 2 Moves axis 1

iii. Power train 3 Moves axis 2

iv. Power train 4 Moves axis 2

v. Power train 5 Moves axis 3

vi. Power train 6 Moves axis 3

vii. Power train 7 Moves axis 4, axis 5 and axis 6

viii. Power train 8 Moves axis 5 and axis 6

ix. Power train 9 Moves axis 6

i. Axis 1 Requires power train 1 and power train 2

ii. Axis 2 Requires power train 3 and power train 4

iii. Axis 3 Requires power train 5 and power train 6

iv. Axis 4 Requires power train 7, power train 8 and power train 9

v. Axis 5 Requires power train 8 and power train 9

vi. Axis 6 Requires power train 9

B.1.8.3 Example linear two-dimensional motion device

For the left motion device in Figure B.10 the References between axes and power trains are shown in Figure
B.13.

Figure B.13 – Coupling references for a simple linear two-dimensional motion device

Moves References:

iv. Power train 1 Moves axis 1

v. Power train 2 Moves axis 2

i. Axis 1 IsMovedBy power train 1

ii. Axis 2 IsMovedBy power train 2

Requires Refernces from power train to axis

i. Axis 1 Requires power train 1

ii. Axis 2 Requires power train 2

i. Power Train 1 IsRequiredBy axis 1

ii. Power Train 2 IsRequiredBy axis 2

For the right motion device in Figure B.10 the References between axes and power trains are shown in Figure
B.14.

OPC 40010-1: Vertical Integration 76 Release 1.00

Figure B.14 – Coupling references for linear two-dimensional motion device

Moves References:

vi. Power train 1 Moves axis 1 and axis 2

vii. Power train 2 Moves axis 1 and axis 2

iii. Axis 1 IsMovedBy power train 1 and power train 2

iv. Axis 2 IsMovedBy power train 1 and power train 2

Requires Refernces from power train to axis

iii. Axis 1 Requires power train 1 and power train 2

iv. Axis 2 Requires power train 1 and power train 2

iii. Power Train 1 IsRequiredBy axis 1 and axis 2

iv. Power Train 2 IsRequiredBy axis 1 and axis 2

B.1.9 Representations of exemplary server implementations

This chapter descripes different examples for the usage of DriveType or a SubType of ComponentType defined
in OPC UA DI inclusive the references described in this specification.

All views show only the instances and references necessary to better illustrate the examples described.

B.1.9.1 ObjectTypes and references used with DriveType instances

Figure B.15 describes the usage of DriveType as an instance of a single-slot drive regarding the manipulator
showed Figure B.10 on the left side.

Release 1.00 77 OPC 40010-1: Vertical Integration

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Gear 2

Controller 1

ComponentsPowerTrains

Axes

DriveType

Drive 1

DriveType

Drive 2

Moves

Moves

IsDrivenBy

IsDrivenBy

Requires

Requires

IsConnectedTo

IsConnectedTo

Figure B.15 – IsDrivenby references to DriveType instances

OPC 40010-1: Vertical Integration 78 Release 1.00

B.1.9.2 ObjectTypes and references used with instances of vendor specific subtypes of
BaseObjectType for drive-channels

Figure B.16 describes the usage of slots or channels of a multi-slot-drive. The instance ot the slot is a vendor
specific subtype of BaseObjectType.

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Gear 2

Controller 1

ComponentsPowerTrains

Axes

DriveType

Multi-Slot Drive 1

Moves

Moves

IsDrivenBy

IsDrivenBy

Requires

Requires

IsConnectedTo

IsConnectedTo

BaseObjectType

Slot 1

BaseObjectType

Slot 2

Figure B.16 – IsDrivenby references to vendor specific subtypes of BaseObjectType instances

Release 1.00 79 OPC 40010-1: Vertical Integration

B.1.9.3 ObjectTypes and references used with instances DriveType for drives with drive-
channels

Figure B.17 describes the usage of DriveType for a multi-slot-drive if deeper information of slot definition is not
available.

It is allowed that several instances of MotorType reference IsDrivenBy to one multi-slot-drive.

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Gear 2

Controller 1

ComponentsPowerTrains

Axes

DriveType

Multi-Slot Drive 1

Moves

Moves

IsDrivenBy

IsDrivenBy

Requires

Requires

IsConnectedTo

IsConnectedTo

Figure B.17 – IsDrivenby references to DriveType instances for mulit-slot drives w/o slots

OPC 40010-1: Vertical Integration 80 Release 1.00

B.1.9.4 ObjectTypes and references used with instances of vendor specific subtypes of
BaseObjectType for motor-integrated-drives

Figure B.18 describes the usage with a motor-integrated-drive as one physical device. The instance MyDrive is
a vendor specific subtype of BaseObjectType. Identification properties of this physical device shall be defined
within the referenced MotorType.

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Gear 2

Controller 1

ComponentsPowerTrains

Axes

Moves

Moves

IsDrivenBy

IsDrivenBy

Requires

Requires

IsConnectedTo

IsConnectedTo

BaseObjectType

MyDrive

BaseObjectType

MyDrive

Figure B.18 – IsDrivenby used with motor-integrated-drives

Release 1.00 81 OPC 40010-1: Vertical Integration

B.1.9.5 Abstract example of a six-axis robot with master-slave axis and drive-slots

Figure B.19 describes an example view on a server with the instances of ObjectTypes and references of a six-
axis robot with master-slave axis and drive-slots described in Annex B.1.8.2.

If a master-slave configuration only has one gear this shall be placed inside the master-power-train.

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Controller 1

ComponentsPowerTrains

Axes

DriveType

Multi-Slot Drive 1

IsDrivenBy

IsDrivenBy

Requires

Requires

IsConnectedTo

IsConnectedTo

BaseObjectType

Slot 1

BaseObjectType

Slot 2

BaseObjectTypeSl

ot 3

Moves

Moves

HasSlave

PowerTrain 3

PowerTrain 4

Motor 3

Gear 2

Motor 4

Requires

Requires

IsConnectedTo

IsConnectedTo

Moves

Moves

HasSlave

Axis 3

PowerTrain 5

PowerTrain 6

Motor 5

Gear 3

Motor 6

Requires

Requires

IsConnectedTo

IsConnectedTo

Moves

Moves

HasSlave

DriveType

Multi-Slot Drive 2

BaseObjectType

Slot 1

BaseObjectType

Slot 2

BaseObjectType

Slot 3

DriveType

Multi-Slot Drive 3

BaseObjectType

Slot 1

BaseObjectType

Slot 2

BaseObjectType

Slot 3Axis 4 PowerTrain 7

Motor 7

Gear 4

IsConnectedTo

IsDrivenBy

IsDrivenBy

IsDrivenBy

IsDrivenBy

IsDrivenBy

Moves

Requires

Axis 5 PowerTrain 8

Motor 8

Gear 5

IsConnectedTo

Moves

Requires

Axis 6 PowerTrain 9

Motor 9

Gear 6

IsConnectedTo
Moves

Requires

IsDrivenBy

IsDrivenBy

Figure B.19 – View on a six-axis robot with master-slave and drive-slots

OPC 40010-1: Vertical Integration 82 Release 1.00

B.1.9.6 Abstract example of a motion device system with three motion devices

Figure B.20 describes an example view on a server with the instances of ObjectTypes and references of a
motion device system consisting of a six-axis robot, a linear unit and a turn-table which are controlled by one
controller.

DeviceSet

MotionDeviceSystem

MotionDevice 1

(6-Axis-Robot)

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Controller 1

ComponentsPowerTrains

Axes

DriveType

Multi-Slot Drive 1

IsDrivenBy

IsDrivenBy

Requires
IsConnectedTo

BaseObjectType

Slot 1

BaseObjectType

Slot 2

BaseObjectType

Slot 3

Moves

Moves

PowerTrain 3

PowerTrain 4

Requires

Axis 3

DriveType

Multi-Slot Drive 2

BaseObjectType

Slot 1

BaseObjectType

Slot 2

BaseObjectType

Slot 3

DriveType

Multi-Slot Drive 3

BaseObjectType

Slot 1

BaseObjectType

Slot 2

BaseObjectType

Slot 3

Axis 4

IsDrivenBy

IsDrivenBy

IsDrivenBy

IsDrivenBy

IsDrivenBy

Axis 5

Axis 6

IsDrivenBy

IsDrivenBy

Motor 2

Gear 2

IsConnectedTo

Motor 3

Gear 3

IsConnectedTo
Requires

Moves

Motor 4

Gear 4

IsConnectedTo
Requires

Moves

PowerTrain 5

Motor 5

Gear 5

IsConnectedTo
Requires

Moves

PowerTrain 6

Motor 6

Gear 6

IsConnectedTo
Requires

Moves

MotionDevice 2

(Linear Unit)

Axis 1

Axis 2

Axes

PowerTrain 1

PowerTrain 2

PowerTrains

Motor 1

Gear 1

IsConnectedTo

Motor 2

Gear 2

IsConnectedTo

Requires

Moves

Requires

Moves

MotionDevice 2

(Turn Table)

Axis 1

Axes

PowerTrain 1

PowerTrains

Motor 1

Gear 1

IsConnectedTo
Requires

Moves

Controls

Controls

Controls

Figure B.20 – View on a motion device system with 3 motion devices controlled by one controller

	Contents
	Figures
	Tables
	Foreword
	1 Scope
	2 Normative references
	3 Terms, definitions and conventions
	3.1 Overview
	3.2 Terms
	3.3 Abbreviations
	3.4 Conventions used in this document
	3.4.1 Conventions for Node descriptions
	3.4.2 NodeIds and BrowseNames
	3.4.2.1 NodeIds
	3.4.2.2 BrowseNames

	3.4.3 Common Attributes
	3.4.3.1 General
	3.4.3.2 Objects
	3.4.3.3 Variables
	3.4.3.4 VariableTypes
	3.4.3.5 Methods
	3.4.3.6 Expanding conventions
	3.4.3.7 Handling of not supported properties

	4 General information to OPC Robotics and OPC UA
	4.1 Introduction to OPC Robotics
	4.2 Introduction to OPC Unified Architecture
	4.2.1 What is OPC UA?
	4.2.2 Basics of OPC UA
	4.2.3 Information modelling in OPC UA
	4.2.3.1 Concepts
	4.2.3.2 Namespaces
	4.2.3.3 Companion Specifications

	5 Use Cases
	6 OPC Robotics Information Model overview
	7 OPC UA ObjectTypes
	7.1 MotionDeviceSystemType ObjectType Definition
	7.1.1 Overview
	7.1.2 ObjectType definition
	7.1.3 ObjectType description
	7.1.3.1 Variable ComponentName
	7.1.3.2 Object MotionDevices
	7.1.3.3 Object Controllers
	7.1.3.4 Object SafetyStates

	7.2 MotionDeviceType ObjectType Definition
	7.2.1 Overview
	7.2.2 ObjectType definition
	7.2.3 ObjectType description
	7.2.3.1 Variable SerialNumber
	7.2.3.2 Variable Manufacturer
	7.2.3.3 Variable Model
	7.2.3.4 Variable ProductCode
	7.2.3.5 Variable AssetId
	7.2.3.6 Variable DeviceManual
	7.2.3.7 Variable ComponentName
	7.2.3.8 Variable MotionDeviceCategory
	7.2.3.9 Object ParameterSet
	7.2.3.10 Object Axes
	7.2.3.11 Object PowerTrains
	7.2.3.12 Object FlangeLoad
	7.2.3.13 Object AdditionalComponents

	7.3 AxisType ObjectType Definition
	7.3.1 Overview
	7.3.2 ObjectType definition
	7.3.3 ObjectType description
	7.3.3.1 Variable AssetId
	7.3.3.2 Variable MotionProfile
	7.3.3.3 Variable AdditionalLoad
	7.3.3.4 Objekt ParameterSet
	7.3.3.5 Reference Requires

	7.4 PowerTrainType ObjectType Definition
	7.4.1 Overview
	7.4.2 ObjectType definition
	7.4.3 ObjectType description
	7.4.3.1 Variable ComponentName
	7.4.3.2 Object <MotorIdenfifier>
	7.4.3.3 Object <GearIdentifier>
	7.4.3.4 Reference Moves
	7.4.3.5 Reference HasSlave

	7.5 MotorType ObjectType Definition
	7.5.1 Overview
	7.5.2 ObjectType definition
	7.5.3 ObjectType description
	7.5.3.1 Variable SerialNumber
	7.5.3.2 Variable Manufacturer
	7.5.3.3 Variable Model
	7.5.3.4 Variable ProductCode
	7.5.3.5 Variable AssetId
	7.5.3.6 Reference IsConnectedTo
	7.5.3.7 Reference IsDrivenBy
	7.5.3.8 Object ParameterSet

	7.6 GearType ObjectType Definition
	7.6.1 Overview
	7.6.2 ObjectType definition
	7.6.3 ObjectType description
	7.6.3.1 Variable SerialNumber
	7.6.3.2 Variable Manufacturer
	7.6.3.3 Variable Model
	7.6.3.4 Variable ProductCode
	7.6.3.5 Variable AssetId
	7.6.3.6 Variable GearRatio
	7.6.3.7 Variable Pitch
	7.6.3.8 Reference IsConnectedTo

	7.7 SafetyStateType ObjectType Definition
	7.7.1 Overview
	7.7.2 ObjectType definition
	7.7.3 ObjectType description
	7.7.3.1 Variable ComponentName
	7.7.3.2 Object EmergencyStopFunctions
	7.7.3.3 Object ProtectiveStopFunctions
	7.7.3.4 Object ParameterSet

	7.8 ControllerType ObjectType Definition
	7.8.1 Overview
	7.8.2 ObjectType definition
	7.8.3 ObjectType description
	7.8.3.1 Variable SerialNumber
	7.8.3.2 Variable Manufacturer
	7.8.3.3 Variable Model
	7.8.3.4 Variable ProductCode
	7.8.3.5 Variable AssetId
	7.8.3.6 Variable DeviceManual
	7.8.3.7 Variable ComponentName
	7.8.3.8 Object CurrentUser
	7.8.3.9 Object Components
	7.8.3.10 Object Software
	7.8.3.11 Object TaskControls
	7.8.3.12 Object ParameterSet
	7.8.3.13 Reference HasSafetyStates
	7.8.3.14 Reference Controls

	7.9 AuxiliaryComponentType ObjectType Definition
	7.9.1 Overview
	7.9.2 ObjectType definition
	7.9.3 ObjectType description
	7.9.3.1 Variable ProductCode
	7.9.3.2 Variable AssetId

	7.10 DriveType
	7.10.1 Overview
	7.10.2 ObjectType definition
	7.10.3 ObjectType description
	7.10.3.1 Variable ProductCode
	7.10.3.2 Variable AssetId

	7.11 TaskControlType ObjectType Definition
	7.11.1 Overview
	7.11.2 ObjectType definition
	7.11.3 ObjectType description
	7.11.3.1 Variable ComponentName
	7.11.3.2 Object ParameterSet
	7.11.3.3 Reference Controls

	7.12 LoadType ObjectType Definition
	7.12.1 Overview
	7.12.2 ObjectType definition
	7.12.3 ObjectType description
	7.12.3.1 Variable Mass
	7.12.3.2 Variable CenterOfMass
	7.12.3.3 Variable Inertia

	7.13 UserType ObjectType Definition
	7.13.1 Overview
	7.13.2 ObjectType definition
	7.13.3 ObjectType description
	7.13.3.1 Variable Level
	7.13.3.2 Variable Name

	8 OPC UA ReferenceTypes
	8.1 General
	8.2 Controls (IsControlledBy) Reference Type
	8.3 Moves (IsMovedBy) Reference Type
	8.4 Requires (IsRequiredBy) Reference Type
	8.5 IsDrivenBy (Drives) Reference Type
	8.6 IsConnectedTo Reference Type
	8.7 HasSafetyStates (SafetyStatesOf) Reference Type
	8.8 HasSlave (IsSlaveOf) Reference Type

	9 Profiles and Namespaces
	9.1 Namespace Metadata
	9.2 Conformance Units and Profiles
	9.3 Server Profiles
	9.3.1 Robotics Base Profile

	9.4 Client Facets
	9.5 Handling of OPC UA Namespaces

	Annex A (normative) Robotics Namespace and mappings
	A.1 Namespace and identifiers for Robotics Information Model
	A.2 Profile URIs for Robotics Information Model

	Annex B (informative) Examples
	B.1 Examples of motion device systems, motion devices, axes and power trains
	B.1.1 Example for motion device systems
	B.1.2 Examples for motion devices and controllers in a motion device system
	B.1.3 Examples for motion devices
	B.1.4 Examples of combinations of motion devices in a motion device system
	B.1.5 Axes and power trains
	B.1.6 Virtual Axes
	B.1.7 Examples for axes and power trains
	B.1.8 Examples for the use of references regarding axes and power trains
	B.1.8.1 Example articulated six-axis industrial robot
	B.1.8.2 Example articulated six-axis industrial robot with 3 master-slave axes
	B.1.8.3 Example linear two-dimensional motion device

	B.1.9 Representations of exemplary server implementations
	B.1.9.1 ObjectTypes and references used with DriveType instances
	B.1.9.2 ObjectTypes and references used with instances of vendor specific subtypes of BaseObjectType for drive-channels
	B.1.9.3 ObjectTypes and references used with instances DriveType for drives with drive-channels
	B.1.9.4 ObjectTypes and references used with instances of vendor specific subtypes of BaseObjectType for motor-integrated-drives
	B.1.9.5 Abstract example of a six-axis robot with master-slave axis and drive-slots
	B.1.9.6 Abstract example of a motion device system with three motion devices

